Modeling of cryogenic compressed hydrogen jet flames

被引:5
|
作者
Ba, Qingxin [1 ]
Zhao, Zeying [2 ]
Zhang, Yunpeng [2 ]
Liu, Yue [2 ]
Christopher, David M. [3 ]
Ge, Peiqi [1 ]
Li, Xuefang [2 ]
机构
[1] Shandong Univ, Sch Mech Engn, Jinan 250061, Peoples R China
[2] Shandong Univ, Inst Thermal Sci & Technol, Inst Adv Technol, Jinan 250061, Peoples R China
[3] Tsinghua Univ, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen safety; Cryogenic compressed hydrogen; Jet flame; Flame temperature; HIGH-PRESSURE; IGNITION; ENERGY; DECAY;
D O I
10.1016/j.ijhydene.2023.06.265
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen will likely be stored and transported at high densities to have sufficient hydrogen on-site for efficient distribution. Cryogenic compressed hydrogen (CcH2) is a high-density hydrogen storage method combining cryogenic temperatures and high pressures. Hydrogen releases from such high-density sources will result in high-momentum jets and jet flames if the jets ignite. This study modelled CcH2 jet flames for stagnation pressures of 2-5 bar and stagnation temperatures of 55-150 K. The numerical models were validated by experimental data from the literature. The results show that the flame length increases with increasing pressure but decreases with increasing temperature. The CcH2 jet flames are longer than their room-temperature counterparts with the same mass flow rate. Then, the CcH2 jet flame lengths were correlated with the mass flow rate and stagnation temperature. Correlations were also developed for predicting trajectory temperatures and the radial temperature distributions in the CcH2 jet flames. The present study provides a sci-entific basis for developing cryogenic hydrogen safety codes and standards and quantitative risk assessment models.(c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:917 / 927
页数:11
相关论文
共 50 条
  • [41] Analytical-numerical solution for turbulent jet diffusion flames of hydrogen
    F. N. Pereira
    G. S. L. Andreis
    A. L. De Bortoli
    N. R. Marcílio
    Journal of Mathematical Chemistry, 2013, 51 : 556 - 568
  • [42] The effects of hydrogen addition on the stability limits of methane jet diffusion flames
    Karbasi, M
    Wierzba, I
    HYDROGEN ENERGY PROGRESS XI, VOLS 1-3, 1996, : 1557 - 1567
  • [43] NOx emission characteristics in turbulent hydrogen jet flames with coaxial air
    Moon, Hee-Jang
    Park, Yang-Ho
    Yoon, Youngbin
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2009, 23 (06) : 1751 - 1759
  • [44] Effects of buoyancy on transitional hydrogen gas-jet diffusion flames
    Agrawal, AK
    Albers, BW
    Alammar, KN
    COMBUSTION SCIENCE AND TECHNOLOGY, 2005, 177 (02) : 305 - +
  • [45] A Numerical Study on NOx Emission by Using Micro Hydrogen Jet Flames
    You, Changhyun
    Hwang, Sangsoon
    JOURNAL OF THE KOREAN SOCIETY OF COMBUSTION, 2021, 26 (03) : 35 - 41
  • [46] NOx emission characteristics in turbulent hydrogen jet flames with coaxial air
    Hee-Jang Moon
    Yang-Ho Park
    Youngbin Yoon
    Journal of Mechanical Science and Technology, 2009, 23 : 1751 - 1759
  • [47] Analytical-numerical solution for turbulent jet diffusion flames of hydrogen
    Pereira, F. N.
    Andreis, G. S. L.
    De Bortoli, A. L.
    Marcilio, N. R.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (02) : 556 - 568
  • [48] Characteristics of hydrogen-hydrocarbon composite fuel turbulent jet flames
    Choudhuri, AR
    Gollahalli, SR
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2003, 28 (04) : 445 - 454
  • [49] Hydrogen-enriched nonpremixed jet flames: Effects of preferential diffusion
    Dinesh, K. K. J. Ranga
    Jiang, X.
    van Oijen, J. A.
    Bastiaans, R. J. M.
    de Goey, L. P. H.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (11) : 4848 - 4863
  • [50] The stability of turbulent hydrogen jet flames with carbon dioxide and propane addition
    Wu, Y.
    Al-Rahbi, I. S.
    Lu, Y.
    Kalghatgi, G. T.
    FUEL, 2007, 86 (12-13) : 1840 - 1848