Arbitrarily slow decay in the Mobius disjointness conjecture
被引:0
|
作者:
Algom, Amir
论文数: 0引用数: 0
h-index: 0
机构:
Univ Haifa, Dept Math, IL-3600600 Tivon, Israel
Penn State Univ, Dept Math, University Pk, PA 16802 USAUniv Haifa, Dept Math, IL-3600600 Tivon, Israel
Algom, Amir
[1
,2
]
Wang, Zhiren
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, University Pk, PA 16802 USAUniv Haifa, Dept Math, IL-3600600 Tivon, Israel
Wang, Zhiren
[2
]
机构:
[1] Univ Haifa, Dept Math, IL-3600600 Tivon, Israel
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
Mobius disjointness;
zero topological entropy;
topological dynamics;
D O I:
10.1017/etds.2022.61
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Sarnak's Mobius disjointness conjecture asserts that for any zero entropy dynamical system (X, T), (1/N)Sigma(N)(n=1) f (T(n)x)mu(n) = o(1) for every f is an element of C(X) and every x is an element of X. We construct examples showing that this o(1) can go to zero arbitrarily slowly. In fact, our methods yield a more general result, where in lieu of mu(n), one can put any bounded sequence a(n) such that the Cesaro mean of the corresponding sequence of absolute values does not tend to zero. Moreover, in our construction, the choice of x depends on the sequence a(n) but (X, T) does not.
机构:
PSL Res Univ, Ecole Hautes Etud Sci Sociales, CNRS, Ctr Anal & Math Sociales, 190-198 Ave France, F-75244 Paris 13, FrancePSL Res Univ, Ecole Hautes Etud Sci Sociales, CNRS, Ctr Anal & Math Sociales, 190-198 Ave France, F-75244 Paris 13, France
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Minist Educ, Shanghai 200433, Peoples R China
Cao, Xiangyu
Lu, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Minist Educ, Shanghai 200433, Peoples R China
Fudan Univ, Key Lab Math Nonlinear Sci, Minist Educ, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Minist Educ, Shanghai 200433, Peoples R China