L-space knots with tunnel number >1 by experiment

被引:1
|
作者
Anderson, Chris [1 ]
Baker, Kenneth L. [1 ]
Gao, Xinghua [2 ]
Kegel, Marc [3 ]
Le, Khanh [4 ]
Miller, Kyle [5 ]
Onaran, Sinem [6 ]
Sangston, Geoffrey [7 ]
Tripp, Samuel [8 ]
Wood, Adam [9 ]
Wright, Ana [10 ]
机构
[1] Univ Miami, Dept Math, Coral Gables, FL USA
[2] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
[3] Humboldt Univ, Inst Math, Berlin, Germany
[4] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
[5] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[6] Hacettepe Univ, Dept Math, Ankara, Turkey
[7] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[8] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
[9] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3052, Australia
[10] Univ Nebraska, Dept Math, Lincoln, NE USA
基金
美国国家科学基金会;
关键词
Braid; L-space knot; asymmetric; SnapPy; FLOER HOMOLOGY; SURGERY;
D O I
10.1080/10586458.2021.1980753
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Dunfield's catalog of the hyperbolic manifolds in the SnapPy census which are complements of L-space knots in S, we determine that 22 have tunnel number 2 while the remaining all have tunnel number 1. Notably, these 22 manifolds contain 9 asymmetric L-space knot complements. Furthermore, using SnapPy and KLO we find presentations of these 22 knots as closures of positive braids that realize the Morton-Franks-Williams bound on braid index. The smallest of these has genus 12 and braid index 4.
引用
收藏
页码:600 / 614
页数:15
相关论文
共 50 条
  • [31] L-space surgeries on 2-component L-space links
    Liu, Beibei
    TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 8 (01): : 65 - 94
  • [32] l-space spectroscopy of the Cosmic Microwave Background with the BOOMERanG experiment
    de Bernardis, P
    Ade, PAR
    Bock, JJ
    Bond, JR
    Borrill, J
    Boscaleri, A
    Coble, K
    Contaldi, CR
    Crill, BP
    De Gasperis, G
    De Troia, G
    Farese, P
    Ganga, K
    Giacometti, M
    Hivon, E
    Hristov, VV
    Iacoangeli, A
    Jaffe, AH
    Jones, WC
    Lange, AE
    Martinis, L
    Masi, S
    Mason, P
    Mauskopf, PD
    Melchiorri, A
    Natoli, P
    Montroy, T
    Netterfield, CB
    Pascale, E
    Piacentini, F
    Pogosyan, D
    Polenta, G
    Pongetti, F
    Prunet, S
    Romeo, G
    Ruhl, JE
    Scaramuzzi, F
    Vittorio, N
    EXPERIMENTAL COSMOLOGY AT MILLIMETRE WAVELENGTHS, 2002, 616 : 3 - 11
  • [33] ON TUNNEL NUMBER ONE KNOTS THAT ARE NOT (1, n)
    Johnson, Jesse
    Thompson, Abigail
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (04) : 609 - 615
  • [34] On the character variety of tunnel number 1 knots
    Hilden, HM
    Lozano, MT
    Montesinos-Amilibia, JM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 938 - 950
  • [35] A REGULAR SYMMETRIZABLE L-SPACE
    SHAKHMATOV, DB
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1987, 40 (11): : 5 - 8
  • [36] Instantons and L-space surgeries
    Baldwin, John A.
    Sivek, Steven
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (10) : 4033 - 4122
  • [37] Tunnel number of tangles and knots
    Saito, Toshio
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (04) : 1303 - 1313
  • [38] ON THE ADDITIVITY OF TUNNEL NUMBER OF KNOTS
    MORIMOTO, K
    TOPOLOGY AND ITS APPLICATIONS, 1993, 53 (01) : 37 - 66
  • [39] A MINIMUM PROBLEM IN L-SPACE
    ESKIN, GI
    DOKLADY AKADEMII NAUK SSSR, 1956, 111 (03): : 547 - 549
  • [40] L-space surgeries on links
    Liu, Yajing
    QUANTUM TOPOLOGY, 2017, 8 (03) : 505 - 570