L-space knots with tunnel number >1 by experiment

被引:1
|
作者
Anderson, Chris [1 ]
Baker, Kenneth L. [1 ]
Gao, Xinghua [2 ]
Kegel, Marc [3 ]
Le, Khanh [4 ]
Miller, Kyle [5 ]
Onaran, Sinem [6 ]
Sangston, Geoffrey [7 ]
Tripp, Samuel [8 ]
Wood, Adam [9 ]
Wright, Ana [10 ]
机构
[1] Univ Miami, Dept Math, Coral Gables, FL USA
[2] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
[3] Humboldt Univ, Inst Math, Berlin, Germany
[4] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
[5] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[6] Hacettepe Univ, Dept Math, Ankara, Turkey
[7] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[8] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
[9] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3052, Australia
[10] Univ Nebraska, Dept Math, Lincoln, NE USA
基金
美国国家科学基金会;
关键词
Braid; L-space knot; asymmetric; SnapPy; FLOER HOMOLOGY; SURGERY;
D O I
10.1080/10586458.2021.1980753
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Dunfield's catalog of the hyperbolic manifolds in the SnapPy census which are complements of L-space knots in S, we determine that 22 have tunnel number 2 while the remaining all have tunnel number 1. Notably, these 22 manifolds contain 9 asymmetric L-space knot complements. Furthermore, using SnapPy and KLO we find presentations of these 22 knots as closures of positive braids that realize the Morton-Franks-Williams bound on braid index. The smallest of these has genus 12 and braid index 4.
引用
收藏
页码:600 / 614
页数:15
相关论文
共 50 条