Enzyme immobilization on α-1,3-glucan: development of flow reactor with fusion protein of α-1,3-glucan binding domains and histamine dehydrogenase

被引:0
|
作者
Nagahashi, Yuta [1 ]
Hasegawa, Kazuki [1 ]
Takagi, Kazuyoshi [2 ]
Yano, Shigekazu [1 ]
机构
[1] Yamagata Univ, Grad Sch Sci & Engn, Yonezawa, Yamagata 9928510, Japan
[2] Ritsumeikan Univ, Dept Appl Chem, Fac Life Sci, Kusatsu, Shiga 5258577, Japan
来源
关键词
alpha-1,3-glucan binding domain; histamine dehydrogenase; enzyme immobilization; flow reactor; NOCARDIOIDES-SIMPLEX;
D O I
10.2323/jgam.2023.04.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
alpha-1,3-Glucanase Agl-KA from Bacillus circulans KA-304 consists of a discoidin domain (DS1), a carbohydrate binding module family 6 (CBM6), a threonine-proline- rich-linker (TP linker), a discoidin domain (DS2), an uncharacterized domain, and a catalytic domain. The binding of DS1, CBM6, and DS2 to alpha-1,3-glucan can be improved in the presence of two of these three domains. In this study, DS1, CBM6, and TP linker were genetically fused to histamine dehydrogenase (HmDH) from Nocardioides simplex NBRC 12069. The fusion enzyme, AGBDs-HmDH, was expressed in Escherichia coli Rosetta 2 (DE3) and purified from the cell-free extract. AGBDs-HmDH bound to 1% micro-particle of alpha-1,3-glucan (diameter: less than 1 mu m) and 7.5% coarse- particle of alpha-1,3-glucan (less than 200 mu m) at about 97 % and 70% of the initial amounts of the enzyme, respectively. A reactor for flow injection analysis filled with AGBDs-HmDH immobilized on the coarse-particle of alpha-1,3-glucan was successfully applied to determine histamine. A linear calibration curve was observed in the range for about 0.1 to 3.0 mM histamine. These findings suggest that the combination of alpha-1,3-glucan and alpha-1,3-glucan binding domains is a candidate for novel enzyme immobilization.
引用
收藏
页码:206 / 214
页数:9
相关论文
共 50 条
  • [21] Ibrexafungerp: An orally active β-1,3-glucan synthesis inhibitor
    Apgar, James M.
    Wilkening, Robert R.
    Parker, Dann L., Jr.
    Meng, Dongfang
    Wildonger, Kenneth J.
    Sperbeck, Donald
    Greenlee, Mark L.
    Balkovec, James M.
    Flattery, Amy M.
    Abruzzo, George K.
    Galgoci, Andrew M.
    Giacobbe, Robert A.
    Gill, Charles J.
    Hsu, Ming-Jo
    Liberator, Paul
    Misura, Andrew S.
    Motyl, Mary
    Kahn, Jennifer Nielsen
    Powles, Maryann
    Racine, Fred
    Dragovic, Jasminka
    Fan, Weiming
    Kirwan, Robin
    Lee, Shu
    Liu, Hao
    Mamai, Ahmed
    Nelson, Kingsley
    Peel, Michael
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2021, 32
  • [22] Construction of a fusion protein consisting of α-1,3-glucan-binding domains and tetrameric red fluorescent protein, which is involved in the aggregation of α-1, 3-glucan and inhibition of fungal biofilm formation
    Otsuka, Yuitsu
    Sasaki, Kai
    Suyotha, Wasana
    Furusawa, Hiroyuki
    Miyazawa, Ken
    Konno, Hiroyuki
    Yano, Shigekazu
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2022, 133 (06) : 524 - 532
  • [23] Molecular cloning and characterization of the β-1,3-glucan recognition protein in Anatolica polita
    Yang, Xiaoxia
    Mao, Xinfang
    Xu, Xin
    Li, Zaixin
    Yang, Jianhua
    Liu, Zhongyuan
    GENE, 2019, 697 : 144 - 151
  • [24] Innate immunity in a pyralid moth -: Functional evaluation of domains from a β-1,3-glucan recognition protein
    Fabrick, JA
    Baker, JE
    Kanost, MR
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (25) : 26605 - 26611
  • [25] An Initial Event in the Insect Innate Immune Response: Structural and Biological Studies of Interactions between β-1,3-Glucan and the N-Terminal Domain of β-1,3-Glucan Recognition Protein
    Dai, Huaien
    Hiromasa, Yasuaki
    Takahashi, Daisuke
    VanderVelde, David
    Fabrick, Jeffrey A.
    Kanost, Michael R.
    Krishnamoorthi, Ramaswamy
    BIOCHEMISTRY, 2013, 52 (01) : 161 - 170
  • [26] The recognition mechanism of triple-helical β-1,3-glucan by a β-1,3-glucanase
    Qin, Zhen
    Yang, Dong
    You, Xin
    Liu, Yu
    Hu, Songqing
    Yan, Qiaojuan
    Yang, Shaoqing
    Jiang, Zhengqiang
    CHEMICAL COMMUNICATIONS, 2017, 53 (67) : 9368 - 9371
  • [27] β-1,3-glucan binding by a thermostable carbohydrate-binding module from Thermotoga maritima
    Boraston, AB
    Warren, RAJ
    Kilburn, DG
    BIOCHEMISTRY, 2001, 40 (48) : 14679 - 14685
  • [28] Antifungal activity of semisynthetic β-1,3-glucan synthase (GS) inhibitors
    Peel, M.
    Pacofsky, G.
    Fan, W.
    Mamai, A.
    Nelson, K.
    Balkovec, J.
    Flattery, A.
    Giaccobe, R.
    Nielsen-Kahn, J.
    Liberator, P.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [29] Structural insights into β-1,3-glucan cleavage by a glycoside hydrolase family
    Santos, Camila R.
    Costa, Pedro A. C. R.
    Vieira, Plinio S.
    Gonzalez, Sinkler E. T.
    Correa, Thamy L. R.
    Lima, Evandro A.
    Mandelli, Fernanda
    Pirolla, Renan A. S.
    Domingues, Mariane N.
    Cabral, Lucelia
    Martins, Marcele P.
    Cordeiro, Rosa L.
    Junior, Atilio T.
    Souza, Beatriz P.
    Prates, Erica T.
    Gozzo, Fabio C.
    Persinoti, Gabriela F.
    Skaf, Munir S.
    Murakami, Mario T.
    NATURE CHEMICAL BIOLOGY, 2020, 16 (08) : 920 - +
  • [30] Wet Spinning and Structure Analysis of α-1,3-Glucan Regenerated Fibers
    Togo, Azusa
    Suzuki, Shiori
    Kimura, Satoshi
    Iwata, Tadahisa
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (04) : 2063 - 2069