Online Identification of Induction Machine Parameter Deviations for Aging Detection - A Comparative Study Using Recursive Least Squares Algorithm and Extended Kalman Filter

被引:0
|
作者
Nachtsheim, Martin [1 ,2 ]
Grund, Karina [1 ]
Endisch, Christian [1 ]
Kennel, Ralph [2 ]
机构
[1] Tech Hsch Ingolstadt, Inst Innovat Mobil, Ingolstadt, Germany
[2] Tech Univ Munich, Sch Engn & Design, Dept Energy & Proc Engn, Munich, Germany
关键词
Induction Machine; Online Parameter Identification; Extended Kalman Filter; Recursive Least Squares Algorithm; Aging Detection; DIAGNOSIS;
D O I
10.1109/ITEC55900.2023.10186964
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The use of electrical machines in automotive traction systems is rapidly increasing. To ensure operational safety, the machine behavior is monitored to detect failures or aging effects. Besides other approaches, online parameter identification is suited for real-time observation of the machine condition during operation. Two of the most established online parameter identification algorithms are the recursive least squares and the extended Kalman filter algorithm. In existing approaches the algorithms identify the absolute parameter values. In this paper the used identification models are modified to directly identify the parameter deviation related to the reference values. This results in an additional advantage in identifying operational parameter changes because nonlinear behavior is provided by the respective parameter reference. The performance of the proposed algorithms to monitor different electrical parameter changes is compared using an extended analytical induction machine model.
引用
收藏
页数:6
相关论文
共 33 条
  • [11] Online Parameter Identification for a DFIG Driven Wind Turbine Generator based on Recursive Least Squares Algorithm
    Belmokhtar, Karim
    Ibrahim, Hussein
    Merabet, Adel
    2015 IEEE 28TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2015, : 965 - 969
  • [12] Parameter estimation of a three-axis spacecraft simulator using recursive least-squares approach with tracking differentiator and Extended Kalman Filter
    Xu, Zheyao
    Qi, Naiming
    Chen, Yukun
    ACTA ASTRONAUTICA, 2015, 117 : 254 - 262
  • [13] Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter
    Xia, Bizhong
    Lao, Zizhou
    Zhang, Ruifeng
    Tian, Yong
    Chen, Guanghao
    Sun, Zhen
    Wang, Wei
    Sun, Wei
    Lai, Yongzhi
    Wang, Mingwang
    Wang, Huawen
    ENERGIES, 2018, 11 (01):
  • [14] Parameter Estimation of Induction Machine at Standstill Using Two-Stage Recursive Least Squares Method
    Zhang, Jinliang
    Kang, Longyun
    Chen, Lingyu
    Xu, Zhihui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [15] Online Parameters Updating Method for Least Squares Support Vector Machine Using Unscented Kalman Filter
    Liu, Xiayong
    Zhou, Shufang
    Yan, Changguo
    Luo, Guangyi
    Zhang, Qiang
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 3323 - 3328
  • [16] An Algorithm for Online Inertia Identification and Load Torque Observation via Adaptive Kalman Observer-Recursive Least Squares
    Yang, Ming
    Liu, Zirui
    Long, Jiang
    Qu, Wanying
    Xu, Dianguo
    ENERGIES, 2018, 11 (04)
  • [17] Estimating Bus Mass Using a Hybrid Approach: Integrating Forgetting Factor Recursive Least Squares with the Extended Kalman Filter
    Du, Jingyang
    Wang, Qian
    Yuan, Xiaolei
    SENSORS, 2025, 25 (06)
  • [18] Online Source Impedance Identification in DC Distribution Systems Using the Recursive Extended Least-Squares Method
    Xu, Jiayue
    Huang, Yingwei
    Amiri, Navid
    Jatskevich, Juri
    Pizniur, Oleksandr
    2018 IEEE 19TH WORKSHOP ON CONTROL AND MODELING FOR POWER ELECTRONICS (COMPEL), 2018,
  • [19] Recursive Least Squares and Adaptive Kalman Filter-Based State and Parameter Estimation for Series Arc Fault Detection on DC Microgrids
    Gajula, Kaushik
    Marepalli, Lalit Kishore
    Yao, Xiu
    Herrera, Luis
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2022, 10 (04) : 4715 - 4724
  • [20] Parameter Identification of BLDC Motor Using Electromechanical Tests and Recursive Least-Squares Algorithm: Experimental Validation
    Jimenez-Gonzalez, Jose
    Gonzalez-Montanez, Felipe
    Manuel Jimenez-Mondragon, Victor
    Ulises Liceaga-Castro, Jesus
    Escarela-Perez, Rafael
    Carlos Olivares-Galvan, Juan
    ACTUATORS, 2021, 10 (07)