Online Identification of Induction Machine Parameter Deviations for Aging Detection - A Comparative Study Using Recursive Least Squares Algorithm and Extended Kalman Filter

被引:0
|
作者
Nachtsheim, Martin [1 ,2 ]
Grund, Karina [1 ]
Endisch, Christian [1 ]
Kennel, Ralph [2 ]
机构
[1] Tech Hsch Ingolstadt, Inst Innovat Mobil, Ingolstadt, Germany
[2] Tech Univ Munich, Sch Engn & Design, Dept Energy & Proc Engn, Munich, Germany
关键词
Induction Machine; Online Parameter Identification; Extended Kalman Filter; Recursive Least Squares Algorithm; Aging Detection; DIAGNOSIS;
D O I
10.1109/ITEC55900.2023.10186964
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The use of electrical machines in automotive traction systems is rapidly increasing. To ensure operational safety, the machine behavior is monitored to detect failures or aging effects. Besides other approaches, online parameter identification is suited for real-time observation of the machine condition during operation. Two of the most established online parameter identification algorithms are the recursive least squares and the extended Kalman filter algorithm. In existing approaches the algorithms identify the absolute parameter values. In this paper the used identification models are modified to directly identify the parameter deviation related to the reference values. This results in an additional advantage in identifying operational parameter changes because nonlinear behavior is provided by the respective parameter reference. The performance of the proposed algorithms to monitor different electrical parameter changes is compared using an extended analytical induction machine model.
引用
收藏
页数:6
相关论文
共 33 条
  • [1] Online parameter identification of synchronous machines using Kalman filter and recursive least squares
    Alves, Erick F.
    Noland, Jonas K.
    Marafioti, Giancarlo
    Mathisen, Geir
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 7121 - 7127
  • [2] Extended Kalman Filter Using a Kernel Recursive Least Squares Observer
    Zhu, Pingping
    Chen, Badong
    Principe, Jose C.
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 1402 - 1408
  • [3] Online-Identification of the Induction Machine Parameters Using the Extended Kalman Filter
    Buchholz, Oleg
    Boecker, Joachim
    Bonifacio, Joao
    2018 XIII INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES (ICEM), 2018, : 1623 - 1629
  • [4] Performance of Recursive Least Squares Algorithm Configurations for Online Parameter Identification of Induction Machines in an Automotive Environment
    Nachtsheim, Martin
    Ernst, Johannes
    Endisch, Christian
    Kennel, Ralph
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2023, 9 (03) : 4236 - 4254
  • [5] Parameter and state estimation for induction motors via interlaced least squares algorithm and Kalman filter
    Marino, P
    Mungiguerra, V
    Russo, F
    Vasca, F
    PESC 96 RECORD - 27TH ANNUAL IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS I AND II, 1996, : 1235 - 1241
  • [6] Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter
    Zhang, Lei
    Wang, Zhenpo
    Sun, Fengchun
    Dorrell, David G.
    ENERGIES, 2014, 7 (05) : 3204 - 3217
  • [7] Identification of induction motor parameter using an Extended Kalman Filter.
    Jaramillo, R
    Alvarez, R
    Cárdenas, V
    Núñez, C
    2004 1st International Conference on Electrical and Electronics Engineering (ICEEE), 2004, : 584 - 588
  • [8] Tire lateral force estimation and grip potential identification using Neural Networks, Extended Kalman Filter, and Recursive Least Squares
    Acosta, Manuel
    Kanarachos, Stratis
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (11): : 3445 - 3465
  • [9] Tire lateral force estimation and grip potential identification using Neural Networks, Extended Kalman Filter, and Recursive Least Squares
    Manuel Acosta
    Stratis Kanarachos
    Neural Computing and Applications, 2018, 30 : 3445 - 3465
  • [10] Hybrid recursive least squares algorithm for online sequential identification using data chunks
    Wang, Ning
    Sun, Jing-Chao
    Er, Meng Joo
    Liu, Yan-Cheng
    NEUROCOMPUTING, 2016, 174 : 651 - 660