Effects of dietary starch and metformin levels on the growth performance, body composition, hepatic glycolipid metabolism, and liver histology of juvenile largemouth bass Micropterus salmoides

被引:14
|
作者
Liu, Qin-Qin [1 ]
Xia, Ru [1 ]
Deng, Xin [1 ]
Yang, Hui-Jun [2 ]
Luo, Li [1 ]
Lin, Shi-Mei [1 ]
Qin, Chuan-Jie [3 ]
Chen, Yong-Jun [1 ]
机构
[1] Southwest Univ, Coll Fisheries, Key Lab Freshwater Fish Reprod Dev, Key Lab Aquat Sci Chongqing,Minist Educ, Chongqing, Peoples R China
[2] Guangzhou Ashare Aquatech Co Ltd, Guangzhou, Peoples R China
[3] Neijiang Normal Univ, Key Lab Sichuan Prov Fishes Conservat & Utilizat U, Neijiang, Peoples R China
关键词
Feed utilization; Blood biochemistry; Liver injury; Glycolipid metabolism; Glucose tolerance; GLUCOSE-HOMEOSTASIS; CARBOHYDRATE; RESPONSES; FISH;
D O I
10.1016/j.aquaculture.2023.739582
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
In this study, an 8-week feeding trial was performed to evaluate the effects of dietary metformin inclusion on the growth performance, body composition, glucose homeostasis and liver histology of juvenile largemouth bass Micropterus salmoides (LMB) fed high starch diets. Using a 2 x 2 factorial design, four isoproteinic (50%) and isolipidic (13%) diets were formulated with two starch levels (9% and 14%) with or without 0.25% metformin inclusion at each starch level. Each diet was assigned to triplicate tanks of LMB with an initial body weight of 10.8 g. The results showed that an increase of dietary starch from 9% to 14% retarded the growth performance (weight gain ratio and specific growth rate) of LMB through impairing feed utilization (feed efficiency ratio, protein efficiency ratio and protein productive value). Though feed consumption increased, the growth performance of LMB did not benefit from dietary metformin administration as a result of the impaired feed utilization. Both the glucose homeostasis (fasting blood glucose) and glucose tolerance of LMB were impaired with increasing dietary starch from 9% to 14%. However, LMB metabolically adapted well to high starch diets through stimulating glycolysis and glycogen synthesis while inhibiting gluconeogenesis in the liver at the molecular level. Moreover, an increase of dietary starch from 9% to 14% upregulated hepatic lipogenic capacities while downregulated fatty acid oxidation thereby promoting lipid deposition in the liver and whole fish. Dietary metformin improved the glucose homeostasis and glucose tolerance of LMB through promoting glycolysis and de novo lipogenesis rather than glycogen deposition in the liver. However, dietary metformin did not mitigate the liver injuries (the activities of alanine aminotransferase and aspartate aminotransferase in the plasma along with histological appearance) in LMB fed high starch diets. In conclusion, our results demonstrated that dietary metformin inclusion did not mitigate the growth retardation and liver injury of LMB fed high starch diets, but improved the glucose homeostasis and glucose tolerance through promoting the glycolytic and lipogenic pathways in the liver.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Effects of Replacement of Dietary Fishmeal by Cottonseed Protein Concentrate on Growth Performance, Liver Health, and Intestinal Histology of Largemouth Bass (Micropterus salmoides)
    Liu, Yulong
    Lu, Qisheng
    Xi, Longwei
    Gong, Yulong
    Su, Jingzhi
    Han, Dong
    Zhang, Zhimin
    Liu, Haokun
    Jin, Junyan
    Yang, Yunxia
    Zhu, Xiaoming
    Xie, Shouqi
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [22] Effects of High Starch and Supplementation of an Olive Extract on the Growth Performance, Hepatic Antioxidant Capacity and Lipid Metabolism of Largemouth Bass (Micropterus salmoides)
    Liang, Xiaofang
    Chen, Pei
    Wu, Xiaoliang
    Xing, Shujuan
    Morais, Sofia
    He, Maolong
    Gu, Xu
    Xue, Min
    ANTIOXIDANTS, 2022, 11 (03)
  • [23] Inositol Inclusion Affects Growth, Body Composition, Antioxidant Performance, and Lipid Metabolism of Largemouth Bass (Micropterus salmoides)
    Xu, Yinglin
    Gong, Ye
    Li, Songlin
    Zhou, Yue
    Ma, Zhixiao
    Yi, Ganfeng
    Chen, Naisong
    Wang, Weilong
    Huang, Xuxiong
    AQUACULTURE NUTRITION, 2024, 2024
  • [24] Growth and metabolic responses of juvenile largemouth bass (Micropterus salmoides) to dietary vitamin c supplementation levels
    Yusuf, Abdullateef
    Huang, Xuxiong
    Chen, Naisong
    Li, Songlin
    Apraku, Andrews
    Wang, Weilong
    David, Micah Adekunle
    AQUACULTURE, 2021, 534
  • [25] The physiological implications of dietary high-amylose starch on the growth performance, hepatic health indices, lipid metabolism, and intestinal microbiota composition in largemouth bass (Micropterus salmoides)
    Huang, Han
    Tian, Xianping
    Sun, Hao
    Liu, Xin
    He, Yuanfa
    Chen, Yongjun
    Lin, Shimei
    AQUACULTURE REPORTS, 2025, 42
  • [26] Effect of Dietary Copper on Growth Performance, Antioxidant Capacity, and Immunity in Juvenile Largemouth Bass (Micropterus salmoides)
    Kayiira, John Cosmas
    Mi, Haifeng
    Liang, Hualiang
    Ren, Mingchun
    Huang, Dongyu
    Zhang, Lu
    Teng, Tao
    FISHES, 2024, 9 (09)
  • [27] Effects of Dietary Inclusion of Clostridium autoethanogenum Protein on the Growth Performance and Liver Health of Largemouth Bass (Micropterus salmoides)
    Lu, Qisheng
    Xi, Longwei
    Liu, Yulong
    Gong, Yulong
    Su, Jingzhi
    Han, Dong
    Yang, Yunxia
    Jin, Junyan
    Liu, Haokun
    Zhu, Xiaoming
    Xie, Shouqi
    FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [28] Effects of Yellow Mealworm (Tenebrio molitor) on Growth Performance, Hepatic Health and Digestibility in Juvenile Largemouth Bass (Micropterus salmoides)
    Chen, Haijie
    Yu, Jiao
    Ran, Xudong
    Wu, Jiaxuan
    Chen, Yongjun
    Tan, Beiping
    Lin, Shimei
    ANIMALS, 2023, 13 (08):
  • [29] Role of dietary isoleucine supplementation in facilitating growth performance and muscle growth in juvenile largemouth bass (Micropterus salmoides)
    Ren, Mingchun
    Shao, Ming
    Liang, Hualiang
    Huang, Dongyu
    Zhang, Lu
    Wang, Yongli
    Xue, Chunyu
    Chen, Xiaoru
    AQUACULTURE REPORTS, 2023, 33
  • [30] High dietary wheat starch negatively regulated growth performance, glucose and lipid metabolisms, liver and intestinal health of juvenile largemouth bass, Micropterus salmoides
    Zhang, Bi-Yun
    Yang, Hong-Ling
    Nie, Qing-Jie
    Zhang, Yu
    Cai, Guo-He
    Sun, Yun-Zhang
    FISH PHYSIOLOGY AND BIOCHEMISTRY, 2024, 50 (02) : 635 - 651