INFERENCE ACCELERATION OF DEEP LEARNING CLASSIFIERS BASED ON RNN

被引:0
|
作者
Keddous, Fekhr Eddine [1 ,2 ]
Shvai, Nadiya [2 ]
Llanza, Arcadi [1 ,2 ]
Nakib, Amir [1 ,2 ]
机构
[1] Univ Paris Est Creteil, Lab LISSI, Paris, France
[2] Cyclope Ai, Paris, France
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Deep Neural Networks; Modern Hopfield Neural Networks; Image Classification; Convolutional Neural Networks; Associative Memory;
D O I
10.1109/ICIP49359.2023.10222316
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a hybrid strategy for accelerating image classification inference based on the Modern Continuous Hopfield Neural Network (MHNN). To implement this strategy, the fully connected layers of convolutional neural networks (CNNs) are replaced by the MHNN. The proposed hybrid architecture achieves promising results for image classification tasks, as demonstrated through experiments on multiple benchmark datasets, including ImageNet, and different CNN architectures. It offers a remarkable speedup in inference time (ranging from 1.12x to 1.6x) and significant compression in terms of the number of neural network parameters (ranging from 1.32x to 49.37x), while maintaining high accuracy. Furthermore, the proposed CNN-MHNN model achieves an accuracy of 99.18% on the Noisy MNIST dataset, outperforming state-of-the-art models with a 0.75% improvement for the Added White Gaussian Noise version.
引用
收藏
页码:2450 / 2454
页数:5
相关论文
共 50 条
  • [31] Energy-efficient Amortized Inference with Cascaded Deep Classifiers
    Guan, Jiaqi
    Liu, Yang
    Liu, Qiang
    Peng, Jian
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2184 - 2190
  • [32] Content based image retrieval by ensembles of deep learning object classifiers
    Hamreras S.
    Boucheham B.
    Molina-Cabello M.A.
    Benítez-Rochel R.
    López-Rubio E.
    Integrated Computer-Aided Engineering, 2020, 27 (03): : 317 - 331
  • [33] A Gradient-based Approach for Explaining Multimodal Deep Learning Classifiers
    Ellis, Charles A.
    Zhang, Rongen
    Calhoun, Vince D.
    Carbajal, Darwin A.
    Miller, Robyn L.
    Wang, May D.
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (IEEE BIBE 2021), 2021,
  • [34] Bronze Dating Identification Method Based on Bounded Classifiers in Deep Learning
    Li Baiqiang
    Pan Guangxu
    Li Tianqian
    Zhu Dong
    Bai Lu
    Yang Xiaoming
    Liu Peigang
    Wen Kunqiang
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (08)
  • [35] Content based image retrieval by ensembles of deep learning object classifiers
    Hamreras, Safa
    Boucheham, Bachir
    Molina-Cabello, Miguel A.
    Benitez-Rochel, Rafaela
    Lopez-Rubio, Ezequiel
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2020, 27 (03) : 317 - 331
  • [36] An efficient plant disease prediction model based on machine learning and deep learning classifiers
    Shinde, Nirmala
    Ambhaikar, Asha
    EVOLUTIONARY INTELLIGENCE, 2025, 18 (01)
  • [37] Prioritizing test cases for deep learning-based video classifiers
    Li, Yinghua
    Dang, Xueqi
    Ma, Lei
    Klein, Jacques
    Bissyande, Tegawende F.
    EMPIRICAL SOFTWARE ENGINEERING, 2024, 29 (05)
  • [38] Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach
    Yun, Sangseok
    Kang, Jae-Mo
    Ha, Jeongseok
    Lee, Sangho
    Ryu, Dong-Woo
    Kwon, Jihoe
    Kim, Il-Min
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [39] Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach
    Yun, Sangseok
    Kang, Jae-Mo
    Ha, Jeongseok
    Lee, Sangho
    Ryu, Dong-Woo
    Kwon, Jihoe
    Kim, Il-Min
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [40] Optimizing deep learning RNN topologies on intel architecture
    Banerjee K.
    Georganas E.
    Kalamkar D.D.
    Ziv B.
    Segal E.
    Anderson C.
    Heinecke A.
    Supercomputing Frontiers and Innovations, 2019, 6 (03) : 64 - 85