Multi-Magnification Attention Convolutional Neural Networks [AI-eXplained]

被引:2
|
作者
Chao, Chia-Wei [1 ]
Hwang, Daniel Winden [1 ]
Tsai, Hung-Wen [1 ]
Lin, Shih-Hsuan [1 ]
Chen, Wei-Li [1 ]
Huang, Chun-Rong [1 ]
Chung, Pau-Choo [1 ]
机构
[1] Natl Cheng Kung Univ, Tainan, Taiwan
关键词
Pathology; Image segmentation; Image analysis; Liver; Convolutional neural networks;
D O I
10.1109/MCI.2023.3277771
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To apply convolutional neural networks (CNNs) on high-resolution images, a common approach is to split the input image into smaller patches. However, the field-of-view is restricted by the input size. To overcome the problem, a multi-magnification attention convolutional neural network (MMA-CNN) is proposed to analyze images based on both local and global features. Our approach focuses on identifying the importance of individual features at each magnification level and is applied to pathology whole slide images (WSIs) segmentation to show its effectiveness. Several interactive figures are also developed to enhance the reader's understanding of our research.
引用
收藏
页码:54 / 55
页数:2
相关论文
共 50 条
  • [1] Evaluation of the Use of Single- and Multi-Magnification Convolutional Neural Networks for the Determination and Quantitation of Lesions in Nonclinical Pathology Studies
    Kuklyte, Jogile
    Fitzgerald, Jenny
    Nelissen, Sophie
    Wei, Haolin
    Whelan, Aoife
    Power, Adam
    Ahmad, Ajaz
    Miarka, Martyna
    Gregson, Mark
    Maxwell, Michael
    Raji, Ruka
    Lenihan, Joseph
    Finn-Moloney, Eve
    Rafferty, Mairin
    Cary, Maurice
    Barale-Thomas, Erio
    O'Shea, Donal
    [J]. TOXICOLOGIC PATHOLOGY, 2021, 49 (04) : 815 - 842
  • [2] Dermatopathologist-level classification of skin cancer with deep neural networks at multi-magnification
    Li, F.
    Chen, X.
    Zhao, S.
    Zuo, K.
    Xie, P.
    Liu, J.
    Yang, C.
    Lu, K.
    Yin, M.
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (05) : S143 - S143
  • [3] Multi-magnification Networks for Deformable Image Registration on Histopathology Images
    Cetin, Oezdemir
    Shu, Yiran
    Flinner, Nadine
    Ziegler, Paul
    Wild, Peter
    Koeppl, Heinz
    [J]. BIOMEDICAL IMAGE REGISTRATION (WBIR 2022), 2022, 13386 : 124 - 133
  • [4] Automatic HCC Detection Using Convolutional Network with Multi-Magnification Input Images
    Huang, Wei-Che
    Chung, Pau-Choo
    Tsai, Hung-Wen
    Chow, Nan-Haw
    Juang, Ying-Zong
    Tsai, Hann-Huei
    Lin, Shih-Hsuan
    Wang, Cheng-Hsiung
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2019), 2019, : 194 - 198
  • [5] Deep Multi-Magnification Networks for multi-class breast cancer image segmentation
    Ho, David Joon
    Yarlagadda, Dig V. K.
    D'Alfonso, Timothy M.
    Hanna, Matthew G.
    Grabenstetter, Anne
    Ntiamoah, Peter
    Brogi, Edi
    Tan, Lee K.
    Fuchs, Thomas J.
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 88
  • [6] Attention-Aware Multi-Task Convolutional Neural Networks
    Lyu, Kejie
    Li, Yingming
    Zhang, Zhongfei
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1867 - 1878
  • [7] An Attention Module for Convolutional Neural Networks
    Zhu, Baozhou
    Hofstee, Peter
    Lee, Jinho
    Al-Ars, Zaid
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT I, 2021, 12891 : 167 - 178
  • [8] Reparameterized attention for convolutional neural networks
    Wu, Yiming
    Li, Ruixiang
    Yu, Yunlong
    Li, Xi
    [J]. PATTERN RECOGNITION LETTERS, 2022, 164 : 89 - 95
  • [9] Neural Architecture Search for Convolutional Neural Networks with Attention
    Nakai, Kohei
    Matsubara, Takashi
    Uehara, Kuniaki
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (02) : 312 - 321
  • [10] Channel attention for quantum convolutional neural networks
    Budiutama, Gekko
    Daimon, Shunsuke
    Nishi, Hirofumi
    Kaneko, Ryui
    Ohtsuki, Tomi
    Matsushita, Yu-ichiro
    [J]. PHYSICAL REVIEW A, 2024, 110 (01)