Deep Multi-Magnification Networks for multi-class breast cancer image segmentation

被引:64
|
作者
Ho, David Joon [1 ]
Yarlagadda, Dig V. K. [1 ]
D'Alfonso, Timothy M. [1 ]
Hanna, Matthew G. [1 ]
Grabenstetter, Anne [1 ]
Ntiamoah, Peter [1 ]
Brogi, Edi [1 ]
Tan, Lee K. [1 ]
Fuchs, Thomas J. [1 ,2 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Pathol, New York, NY 10065 USA
[2] Weill Cornell Grad Sch Med Sci, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
Breast cancer; Computational pathology; Multi-class image segmentation; Deep Multi-Magnification Network; Partial annotation;
D O I
10.1016/j.compmedimag.2021.101866
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Pathologic analysis of surgical excision specimens for breast carcinoma is important to evaluate the completeness of surgical excision and has implications for future treatment. This analysis is performed manually by pathologists reviewing histologic slides prepared from formalin-fixed tissue. In this paper, we present Deep Multi-Magnification Network trained by partial annotation for automated multi-class tissue segmentation by a set of patches from multiple magnifications in digitized whole slide images. Our proposed architecture with multi-encoder, multi-decoder, and multi-concatenation outperforms other single and multi-magnification-based architectures by achieving the highest mean intersection-over-union, and can be used to facilitate pathologists' assessments of breast cancer.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Deep Multi-Magnification Similarity Learning for Histopathological Image Classification
    Diao, Songhui
    Luo, Weiren
    Hou, Jiaxin
    Lambo, Ricardo
    AL-kuhali, Hamas A.
    Zhao, Hanqing
    Tian, Yinli
    Xie, Yaoqin
    Zaki, Nazar
    Qin, Wenjian
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (03) : 1535 - 1545
  • [2] Multi-magnification Networks for Deformable Image Registration on Histopathology Images
    Cetin, Oezdemir
    Shu, Yiran
    Flinner, Nadine
    Ziegler, Paul
    Wild, Peter
    Koeppl, Heinz
    [J]. BIOMEDICAL IMAGE REGISTRATION (WBIR 2022), 2022, 13386 : 124 - 133
  • [3] Dermatopathologist-level classification of skin cancer with deep neural networks at multi-magnification
    Li, F.
    Chen, X.
    Zhao, S.
    Zuo, K.
    Xie, P.
    Liu, J.
    Yang, C.
    Lu, K.
    Yin, M.
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (05) : S143 - S143
  • [4] Multi-Magnification Image Search in Digital Pathology
    Rasoolijaberi, Maral
    Babaei, Morteza
    Riasatian, Abtin
    Hemati, Sobhan
    Ashrafi, Parsa
    Gonzalez, Ricardo
    Tizhoosh, Hamid R.
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (09) : 4611 - 4622
  • [5] Deep Learning Framework for Multi-class Breast Cancer Histology Image Classification
    Vang, Yeeleng S.
    Chen, Zhen
    Xie, Xiaohui
    [J]. IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 914 - 922
  • [6] Multi-Class Micro-CT Image Segmentation Using Sparse Regularized Deep Networks
    Yazdani, Amirsaeed
    Sun, Yung-Chen
    Stephens, Nicholas B.
    Ryan, Timothy
    Monga, Vishal
    [J]. 2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 1553 - 1557
  • [7] Unsupervised Multi-Class Joint Image Segmentation
    Wang, Fan
    Huang, Qixing
    Ovsjanikov, Maks
    Guibas, Leonidas J.
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 3142 - 3149
  • [8] Provably Efficient Multi-Cancer Image Segmentation Based on Multi-Class Fuzzy Entropy
    Jasim, Hend Muslim
    Ghrabat, Mudhafar Jalil Jassim
    Abdulrahman, Luqman Qader
    Nyangaresi, Vincent Omollo
    Ma, Junchao
    Abduljabbar, Zaid Ameen
    Abduljaleel, Iman Qays
    [J]. Informatica (Slovenia), 2023, 47 (08): : 77 - 88
  • [9] A Combined Method for Multi-class Image Semantic Segmentation
    Gao, Chao
    Zhang, Xin
    Wang, Hui
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2012, 58 (02) : 596 - 604
  • [10] IMAGE SEGMENTATION AND RECOGNITION FOR MULTI-CLASS CHINESE FOOD
    Liang, Yuxiang
    Li, Jiangfeng
    Zhao, Qinpei
    Rao, Weixiong
    Zhang, Chenxi
    Wang, Congrong
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3938 - 3942