Causal Mediation Analysis for Multivariate Longitudinal Data and Survival Outcomes
被引:2
|
作者:
Zhou, Xiaoxiao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Hong Kong, Peoples R China
Zhou, Xiaoxiao
[1
]
Song, Xinyuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Hong Kong, Peoples R China
Song, Xinyuan
[1
,2
]
机构:
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
This study proposes a joint modeling approach to conduct causal mediation analysis that accommodates multivariate longitudinal data, dynamic latent mediator, and survival outcome. First, we introduce a confirmatory factor analysis model to characterize a time-varying latent mediator through multivariate longitudinal observable variables. Then, we establish a growth curve model to describe the linear trajectory of the dynamic latent mediator and simultaneously explore the relationship between the exposure and the mediating process. Finally, we link the mediating process to the survival outcome through a proportional hazards model. In addition, we use the mediation formula approach to assess the natural direct and indirect effects and prove the identifiability of the causal effects under sequential ignorability assumptions. A Bayesian approach incorporating the Markov chain Monte Carlo algorithm is developed to estimate the causal effects efficiently. Simulation studies are conducted to evaluate the empirical performance of the proposed method. An application to the Alzheimer's Disease Neuroimaging Initiative study further confirms the utility of the proposed method.
机构:
Indian Inst Hlth & Family Welf, Indian Inst Publ Hlth, Hyderabad 500038, Andhra Pradesh, IndiaIndian Inst Hlth & Family Welf, Indian Inst Publ Hlth, Hyderabad 500038, Andhra Pradesh, India
Bandyopadhyay, S.
Ganguli, B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calcutta, Dept Stat, Kolkata 700073, W Bengal, IndiaIndian Inst Hlth & Family Welf, Indian Inst Publ Hlth, Hyderabad 500038, Andhra Pradesh, India
Ganguli, B.
Chatterjee, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Burdwan, Dept Stat, Burdwan 713104, W Bengal, IndiaIndian Inst Hlth & Family Welf, Indian Inst Publ Hlth, Hyderabad 500038, Andhra Pradesh, India
机构:
Novartis, Dept Biostat & Pharmacometr, Neurosci Global Drug Dev, E Hanover, NJ USANovartis, Dept Biostat & Pharmacometr, Neurosci Global Drug Dev, E Hanover, NJ USA
Zhou, Jie
Jiang, Xun
论文数: 0引用数: 0
h-index: 0
机构:
Amgen Inc, Ctr Design & Anal, Thousand Oaks, CA USANovartis, Dept Biostat & Pharmacometr, Neurosci Global Drug Dev, E Hanover, NJ USA
Jiang, Xun
Xia, H. Amy
论文数: 0引用数: 0
h-index: 0
机构:
Amgen Inc, Ctr Design & Anal, Thousand Oaks, CA USANovartis, Dept Biostat & Pharmacometr, Neurosci Global Drug Dev, E Hanover, NJ USA
Xia, H. Amy
Hobbs, Brian P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Dept Populat Hlth, Austin, TX USANovartis, Dept Biostat & Pharmacometr, Neurosci Global Drug Dev, E Hanover, NJ USA
Hobbs, Brian P.
Wei, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USANovartis, Dept Biostat & Pharmacometr, Neurosci Global Drug Dev, E Hanover, NJ USA