CsOH-Promoted Regiospecific Sulfenylation, Selenylation, and Telluration of Indoles in H2O

被引:7
|
作者
Xu, Shitang [1 ,2 ]
Yi, Rongnan [1 ,2 ]
Zeng, Chunling [1 ,2 ]
Cui, Yue [1 ,2 ]
Wang, Xue-Qiang [1 ,2 ,4 ]
Xu, Xinhua [1 ,2 ]
Li, Ningbo [3 ]
机构
[1] Hunan Univ, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China
[3] Shanxi Med Univ, Sch Basic Med Sci, Dept Chem, Taiyuan 030001, Peoples R China
[4] Hunan Univ, Mol Sci & Biomed Lab MBL, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
indole; regiospecific; chalcogenation; H2O; METAL-FREE SULFENYLATION; CATALYZED SULFENYLATION; REGIOSELECTIVE SULFENYLATION; POTENT INHIBITORS; 3-SULFENYLATION; 3-ARYLTHIOINDOLES; ARYLTHIOINDOLES; ALKYLTHIO; OXIDANT; ACCESS;
D O I
10.1055/a-1879-2521
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Various indole-containing compounds have shown impressive pharmaceutical activities against a variety of diseases. However, the functionalization of indoles usually relies on systems that use organic solvents, which do not meet the criteria for green and sustainable chemical development. To address this issue, regiospecific sulfenylation, selenylation, and telluration of indoles were developed using H2O as solvent. The highly efficient chalcogenylation of indoles was achieved utilizing CsOH as a promoter, thus avoiding the use of expensive transition-metal catalysts. This newly developed protocol is characterized by its outstanding features including simple operation, mild conditions, wide substrate scope, excellent functional group tolerance, and recyclability, leading to the convenient synthesis of 3-chalcogenyl-indoles.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 50 条
  • [21] Theoretical study of mixed hydrogen-bonded complexes:: H2O•••HCN•••H2O and H2O•••HCN•••HCN•••H2O
    Rivelino, R
    Canuto, S
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (50): : 11260 - 11265
  • [22] A tetragonal polymorph of caesium hydroxide monohydrate, CsOH•H2O, from X-ray powder data
    Cerny, R
    Favre-Nicolin, V
    Bertheville, B
    ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 2002, 58 (03) : i31 - i32
  • [23] The water trimer reaction OH + (H2O)3 → (H2O)2OH + H2O
    Gao, Aifang
    Li, Guoliang
    Peng, Bin
    Weidman, Jared D.
    Xie, Yaoming
    Schaefer, Henry F.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (17) : 9767 - 9774
  • [24] Properties of (H2O)n, (H2O)n, and (H2O)nH+ clusters.
    Jordan, KD
    Vila, F
    Christie, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U387 - U387
  • [25] THE SIMPLE CLUSTERS (H3O+)(H2O)1, (H3O+)(H2O)2, (H3O+)(H2O)3
    SCHAEFER, HF
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1985, 189 (APR-): : 103 - PHYS
  • [26] H2O
    Nawre, Alpa
    Clouse, Carey
    JOURNAL OF ARCHITECTURAL EDUCATION, 2020, 74 (01) : 2 - 3
  • [27] 'H2O'
    BEISSEL, H
    CANADIAN LITERATURE, 1983, (96): : 11 - 12
  • [28] 《H2O》
    王凯
    牡丹, 2023, (20) : 129 - 129
  • [29] H2O
    黑夜
    中国摄影, 2019, (07) : 54 - 57
  • [30] Theoretical studies of large water clusters: (H2O)(28), (H2O)(29), (H2O)(30), and (H2O)(31) hexakaidecahedral structures
    Khan, A
    JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (13): : 5537 - 5540