Runtime Monitoring for Out-of-Distribution Detection in Object Detection Neural Networks

被引:1
|
作者
Hashemi, Vahid [1 ]
Kretinsky, Jan [2 ]
Rieder, Sabine [1 ,2 ]
Schmidt, Jessica [1 ,3 ]
机构
[1] AUDI AG, Ingolstadt, Germany
[2] Tech Univ Munich, Munich, Germany
[3] CISPA Helmholtz Ctr Informat Secur, Saarbrucken, Germany
来源
FORMAL METHODS, FM 2023 | 2023年 / 14000卷
基金
欧盟地平线“2020”;
关键词
Runtime monitoring; Neural networks; Out-of-distribution detection; Object detection; ANOMALY DETECTION;
D O I
10.1007/978-3-031-27481-7_36
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Runtime monitoring provides a more realistic and applicable alternative to verification in the setting of real neural networks used in industry. It is particularly useful for detecting out-of-distribution (OOD) inputs, for which the network was not trained and can yield erroneous results. We extend a runtime-monitoring approach previously proposed for classification networks to perception systems capable of identification and localization of multiple objects. Furthermore, we analyze its adequacy experimentally on different kinds of OOD settings, documenting the overall efficacy of our approach.
引用
收藏
页码:622 / 634
页数:13
相关论文
共 50 条
  • [21] SAFE: Sensitivity-Aware Features for Out-of-Distribution Object Detection
    Wilson, Samuel
    Fischer, Tobias
    Dayoub, Feras
    Miller, Dimity
    Sunderhauf, Niko
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 23508 - 23519
  • [22] OODCN: Out-Of-Distribution Detection in Capsule Networks for Fault Identification
    Mitiche, Imene
    Salimy, Alireza
    Werner, Falk
    Boreham, Philip
    Nesbitt, Alan
    Morison, Gordon
    [J]. 29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1686 - 1690
  • [23] Out-of-Distribution Detection for Automotive Perception
    Nitsch, Julia
    Itkina, Masha
    Senanayake, Ransalu
    Nieto, Juan
    Schmidt, Max
    Siegwart, Roland
    Kochenderfer, Mykel J.
    Cadena, Cesar
    [J]. 2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2938 - 2943
  • [24] A Data-centric Framework to Endow Graph Neural Networks with Out-Of-Distribution Detection Ability
    Guo, Yuxin
    Yang, Cheng
    Chen, Yuluo
    Liu, Jixi
    Shi, Chuan
    Du, Junping
    [J]. PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 638 - 648
  • [25] Out-of-Distribution Detection Using Outlier Detection Methods
    Diers, Jan
    Pigorsch, Christian
    [J]. IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 15 - 26
  • [26] Decoupling MaxLogit for Out-of-Distribution Detection
    Zhang, Zihan
    Xiang, Xiang
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3388 - 3397
  • [27] Exploring the Limits of Out-of-Distribution Detection
    Fort, Stanislav
    Ren, Jie
    Lakshminarayanan, Balaji
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [28] Generalized Out-of-Distribution Detection: A Survey
    Yang, Jingkang
    Zhou, Kaiyang
    Li, Yixuan
    Liu, Ziwei
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024,
  • [29] Semantically Coherent Out-of-Distribution Detection
    Yang, Jingkang
    Wang, Haoqi
    Feng, Litong
    Yan, Xiaopeng
    Zheng, Huabin
    Zhang, Wayne
    Liub, Ziwei
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8281 - 8289
  • [30] Likelihood Ratios for Out-of-Distribution Detection
    Ren, Jie
    Liu, Peter J.
    Fertig, Emily
    Snoek, Jasper
    Poplin, Ryan
    DePristo, Mark A.
    Dillon, Joshua V.
    Lakshminarayanan, Balaji
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32