Performance Evaluation of Error-Correcting Output Coding Based on Noisy and Noiseless Binary Classifiers

被引:0
|
作者
Kumoi, Gendo [1 ]
Yagi, Hideki [2 ]
Kobayashi, Manabu [1 ]
Goto, Masayuki [3 ]
Hirasawa, Shigeichi [1 ]
机构
[1] Waseda Univ, Ctr Data Sci, 1-6-1,Nishiwaseda, Tokyo, Tokyo 1698050, Japan
[2] Univ Electrocommun, Dept Comp & Network Engn, 1-5-1Chofugaoka, Chofu, Tokyo 1828585, Japan
[3] Waseda Univ, Sch Creat Sci & Engn, 3-4-1, Okubo, Tokyo 1698555, Japan
关键词
Multi-valued classification; error-correcting output coding; noisy binary classifier; noiseless binary classifier; estimated posterior probability; hamming distance; MULTICLASS; CODES;
D O I
10.1142/S0129065723500041
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Error-correcting output coding (ECOC) is a method for constructing a multi-valued classifier using a combination of given binary classifiers. ECOC can estimate the correct category by other binary classifiers even if the output of some binary classifiers is incorrect based on the framework of the coding theory. The code word table representing the combination of these binary classifiers is important in ECOC. ECOC is known to perform well experimentally on real data. However, the complexity of the classification problem makes it difficult to analyze the classification performance in detail. For this reason, theoretical analysis of ECOC has not been conducted. In this study, if a binary classifier outputs the estimated posterior probability with errors, then this binary classifier is said to be noisy. In contrast, if a binary classifier outputs the true posterior probability, then this binary classifier is said to be noiseless. For a theoretical analysis of ECOC, we discuss the optimality for the code word table with noiseless binary classifiers and the error rate for one with noisy binary classifiers. This evaluation result shows that the Hamming distance of the code word table is an important indicator.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Error-Correcting Codes for Noisy Duplication Channels
    Tang, Yuanyuan
    Farnoud, Farzad
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (06) : 3452 - 3463
  • [22] Holographic method of error-correcting coding
    Timofeev, Alexander L.
    Sultanov, Albert Kh.
    [J]. OPTICAL TECHNOLOGIES FOR TELECOMMUNICATIONS 2018, 2019, 11146
  • [23] Quantum error-correcting output codes
    Windridge, David
    Mengoni, Riccardo
    Nagarajan, Rajagopal
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (08)
  • [24] Deep Error-Correcting Output Codes
    Wang, Li-Na
    Wei, Hongxu
    Zheng, Yuchen
    Dong, Junyu
    Zhong, Guoqiang
    [J]. ALGORITHMS, 2023, 16 (12)
  • [25] Recoding Error-Correcting Output Codes
    Escalera, Sergio
    Pujol, Oriol
    Radeva, Petia
    [J]. MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2009, 5519 : 11 - +
  • [26] SYNCHRONIZABLE ERROR-CORRECTING BINARY CODES
    SHIVA, SGS
    SEGUIN, G
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (02) : 241 - +
  • [27] EVALUATION OF THE PERFORMANCE OF ERROR-CORRECTING CODES ON A GILBERT CHANNEL
    YEE, JR
    WELDON, EJ
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1995, 43 (08) : 2316 - 2323
  • [28] Error-correcting output codes based on feature space transformation
    Lei, Lei
    Wang, Xiao-Dan
    Luo, Xi
    Song, Ya-Fei
    Xue, Ai-Jun
    [J]. Kongzhi yu Juece/Control and Decision, 2015, 30 (09): : 1597 - 1602
  • [29] Improvement of performance in multiclass problems by using biclassification based on error-correcting output code
    Kim, Young Bun
    Oh, Jung Hun
    Gao, Jean
    [J]. WCECS 2007: WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, 2007, : 677 - 682
  • [30] Error-correcting output codes based ensemble feature extraction
    Zhong, Guoqiang
    Liu, Cheng-Lin
    [J]. PATTERN RECOGNITION, 2013, 46 (04) : 1091 - 1100