Nonautoregressive Encoder-Decoder Neural Framework for End-to-End Aspect-Based Sentiment Triplet Extraction

被引:39
|
作者
Fei, Hao [1 ]
Ren, Yafeng [2 ]
Zhang, Yue [3 ]
Ji, Donghong [1 ]
机构
[1] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
[2] Guangdong Univ Foreign Studies, Lab Language & Artificial Intelligence, Guangzhou 510420, Peoples R China
[3] Westlake Univ, Sch Engn, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Decoding; Sentiment analysis; Predictive models; Labeling; Analytical models; Transformers; Bipartite matching loss; encoder-decoder framework; natural language processing (NLP); nonautoregressive decoding; pointer network; sentiment analysis; NETWORK; MODEL;
D O I
10.1109/TNNLS.2021.3129483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aspect-based sentiment triplet extraction (ASTE) aims at recognizing the joint triplets from texts, i.e., aspect terms, opinion expressions, and correlated sentiment polarities. As a newly proposed task, ASTE depicts the complete sentiment picture from different perspectives to better facilitate real-world applications. Unfortunately, several major challenges, such as the overlapping issue and long-distance dependency, have not been addressed effectively by the existing ASTE methods, which limits the performance of the task. In this article, we present an innovative encoder-decoder framework for end-to-end ASTE. Specifically, the ASTE task is first modeled as an unordered triplet set prediction problem, which is satisfied with a nonautoregressive decoding paradigm with a pointer network. Second, a novel high-order aggregation mechanism is proposed for fully integrating the underlying interactions between the overlapping structure of aspect and opinion terms. Third, a bipartite matching loss is introduced for facilitating the training of our nonautoregressive system. Experimental results on benchmark datasets show that our proposed framework significantly outperforms the state-of-the-art methods. Further analysis demonstrates the advantages of the proposed framework in handling the overlapping issue, relieving long-distance dependency and decoding efficiency.
引用
收藏
页码:5544 / 5556
页数:13
相关论文
共 50 条
  • [1] Encoder-Decoder Based Attractors for End-to-End Neural Diarization
    Horiguchi, Shota
    Fujita, Yusuke
    Watanabe, Shinji
    Xue, Yawen
    Garcia, Paola
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2022, 30 : 1493 - 1507
  • [2] End-to-End Aspect Extraction and Aspect-Based Sentiment Analysis Framework for Low-Resource Languages
    Aivatoglou, Georgios
    Fytili, Alexia
    Arampatzis, Georgios
    Zaikis, Dimitrios
    Stylianou, Nikolaos
    Vlahavas, Ioannis
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023, 2024, 824 : 841 - 858
  • [3] A hierarchical and parallel framework for End-to-End Aspect-based Sentiment Analysis
    Xiao, Ding
    Ren, Feiyang
    Pang, Xiaoxuan
    Cai, Ming
    Wang, Qianyu
    He, Ming
    Peng, Jiawei
    Fu, Hao
    NEUROCOMPUTING, 2021, 465 : 549 - 560
  • [4] A multi-task learning framework for end-to-end aspect sentiment triplet extraction
    Chen, Fang
    Yang, Zhongliang
    Huang, Yongfeng
    NEUROCOMPUTING, 2022, 479 : 12 - 21
  • [5] A Multitask Multiview Neural Network for End-to-End Aspect-Based Sentiment Analysis
    Bie, Yong
    Yang, Yan
    BIG DATA MINING AND ANALYTICS, 2021, 4 (03) : 195 - 207
  • [6] A Multitask Multiview Neural Network for End-to-End Aspect-Based Sentiment Analysis
    Yong Bie
    Yan Yang
    Big Data Mining and Analytics, 2021, 4 (03) : 195 - 207
  • [7] Attention-Based Encoder-Decoder End-to-End Neural Diarization With Embedding Enhancer
    Chen, Zhengyang
    Han, Bing
    Wang, Shuai
    Qian, Yanmin
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 1636 - 1649
  • [8] Joint Aspect and Polarity Classification for Aspect-based Sentiment Analysis with End-to-End Neural Networks
    Schmitt, Martin
    Steinheber, Simon
    Schreiber, Konrad
    Roth, Benjamin
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 1109 - 1114
  • [9] End-to-End Deep Background Subtraction based on Encoder-Decoder Network
    Le, Duy H.
    Pham, Tuan, V
    PROCEEDINGS OF 2019 6TH NATIONAL FOUNDATION FOR SCIENCE AND TECHNOLOGY DEVELOPMENT (NAFOSTED) CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS), 2019, : 381 - 386
  • [10] End-to-end Aspect-based Sentiment Analysis with Combinatory Categorial Grammar
    Tian, Yuanhe
    Chen, Weidong
    Hu, Bo
    Song, Yan
    Xia, Fei
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 13597 - 13609