A Multitask Multiview Neural Network for End-to-End Aspect-Based Sentiment Analysis

被引:31
|
作者
Bie, Yong [1 ]
Yang, Yan [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; multitask learning; multiview learning; natural language processing; aspect-based sentiment analysis; EXTRACTION;
D O I
10.26599/BDMA.2021.9020003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aspect-based sentiment analysis (ABSA) consists of two subtasks-aspect term extraction and aspect sentiment prediction. Existing methods deal with both subtasks one by one in a pipeline manner, in which there lies some problems in performance and real application. This study investigates the end-to-end ABSA and proposes a novel multitask multiview network (MTMVN) architecture. Specifically, the architecture takes the unified ABSA as the main task with the two subtasks as auxiliary tasks. Meanwhile, the representation obtained from the branch network of the main task is regarded as the global view, whereas the representations of the two subtasks are considered two local views with different emphases. Through multitask learning, the main task can be facilitated by additional accurate aspect boundary information and sentiment polarity information. By enhancing the correlations between the views under the idea of multiview learning, the representation of the global view can be optimized to improve the overall performance of the model. The experimental results on three benchmark datasets show that the proposed method exceeds the existing pipeline methods and end-to-end methods, proving the superiority of our MTMVN architecture.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 50 条
  • [1] A Multitask Multiview Neural Network for End-to-End Aspect-Based Sentiment Analysis
    Yong Bie
    Yan Yang
    Big Data Mining and Analytics, 2021, 4 (03) : 195 - 207
  • [2] Cross-Modal Multitask Transformer for End-to-End Multimodal Aspect-Based Sentiment Analysis
    Yang, Li
    Na, Jin-Cheon
    Yu, Jianfei
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)
  • [3] Joint Aspect and Polarity Classification for Aspect-based Sentiment Analysis with End-to-End Neural Networks
    Schmitt, Martin
    Steinheber, Simon
    Schreiber, Konrad
    Roth, Benjamin
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 1109 - 1114
  • [4] An Interactive Learning Network That Maintains Sentiment Consistency in End-to-End Aspect-Based Sentiment Analysis
    Chen, Musheng
    Hua, Qingrong
    Mao, Yaojun
    Wu, Junhua
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [5] A hierarchical and parallel framework for End-to-End Aspect-based Sentiment Analysis
    Xiao, Ding
    Ren, Feiyang
    Pang, Xiaoxuan
    Cai, Ming
    Wang, Qianyu
    He, Ming
    Peng, Jiawei
    Fu, Hao
    NEUROCOMPUTING, 2021, 465 : 549 - 560
  • [6] Neural multi-task learning for end-to-end Arabic aspect-based sentiment analysis
    Bensoltane, Rajae
    Zaki, Taher
    COMPUTER SPEECH AND LANGUAGE, 2025, 89
  • [7] An Interactive Multi-Task Learning Network for End-to-End Aspect-Based Sentiment Analysis
    He, Ruidan
    Lee, Wee Sun
    Ng, Hwee Tou
    Dahlmeier, Daniel
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 504 - 515
  • [8] Enhancing Arabic Aspect-Based Sentiment Analysis Using End-to-End Model
    Shafiq, Ghada M.
    Hamza, Taher
    Alrahmawy, Mohammed F.
    El-Deeb, Reem
    IEEE ACCESS, 2023, 11 : 142062 - 142076
  • [9] Transferable End-to-End Aspect-based Sentiment Analysis with Selective Adversarial Learning
    Li, Zheng
    Li, Xin
    Wei, Ying
    Bing, Lidong
    Zhang, Yu
    Yang, Qiang
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 4590 - 4600
  • [10] End-to-end aspect-based sentiment analysis with hierarchical multi-task learning
    Wang, Xinyi
    Xu, Guangluan
    Zhang, Zequn
    Jin, Li
    Sun, Xian
    NEUROCOMPUTING, 2021, 455 : 178 - 188