An asymptotic version of Cobham's theorem

被引:1
|
作者
Konieczny, Jakub [1 ]
机构
[1] Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Villeurbanne, France
关键词
Cobham's theorem; automatic sequences; AUTOMATA; ANALOG;
D O I
10.4064/aa220927-17-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:323 / 343
页数:21
相关论文
共 50 条
  • [31] On a rainbow version of Dirac's theorem
    Joos, Felix
    Kim, Jaehoon
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (03) : 498 - 504
  • [32] A bilipschitz version of Hardt's theorem
    Valette, G
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (12) : 895 - 900
  • [33] A positional version of Arrow's theorem
    Quesada, A
    JOURNAL OF MATHEMATICAL ECONOMICS, 2005, 41 (08) : 1053 - 1059
  • [34] A stochastic version of Artstein's theorem
    Florchinger, P
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 1888 - 1889
  • [35] A difference version of Nori's theorem
    Maier, Annette
    MATHEMATISCHE ANNALEN, 2014, 359 (3-4) : 759 - 784
  • [36] A Global version of Grozman's theorem
    Iohara, Kenji
    Mathieu, Olivier
    MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (3-4) : 955 - 992
  • [37] A quantitative version of Picard's theorem
    Bergweiler, W
    ARKIV FOR MATEMATIK, 1996, 34 (02): : 225 - 229
  • [38] A quantum version of Sanov's theorem
    Bjelakovic, I
    Deuschel, JD
    Krüger, T
    Seiler, R
    Siegmund-Schultze, R
    Szkola, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (03) : 659 - 671
  • [39] An effective version of Belyi's Theorem
    Khadjavi, LS
    JOURNAL OF NUMBER THEORY, 2002, 96 (01) : 22 - 47
  • [40] Quasiperiodic Version of Gordon's Theorem
    Bolotin, Sergey V.
    Treschev, Dmitry V.
    REGULAR & CHAOTIC DYNAMICS, 2023, 28 (01): : 5 - 13