Deep Learning-Based Child Handwritten Arabic Character Recognition and Handwriting Discrimination

被引:5
|
作者
Alwagdani, Maram Saleh [1 ]
Jaha, Emad Sami [1 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Comp Sci, Jeddah 21589, Saudi Arabia
关键词
child handwriting; handwritten character recognition; writer-group classification; convolutional neural network; deep learning; machine learning;
D O I
10.3390/s23156774
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Handwritten Arabic character recognition has received increasing research interest in recent years. However, as of yet, the majority of the existing handwriting recognition systems have only focused on adult handwriting. In contrast, there have not been many studies conducted on child handwriting, nor has it been regarded as a major research issue yet. Compared to adults' handwriting, children's handwriting is more challenging since it often has lower quality, higher variation, and larger distortions. Furthermore, most of these designed and currently used systems for adult data have not been trained or tested for child data recognition purposes or applications. This paper presents a new convolution neural network (CNN) model for recognizing children's handwritten isolated Arabic letters. Several experiments are conducted here to investigate and analyze the influence when training the model with different datasets of children, adults, and both to measure and compare performance in recognizing children's handwritten characters and discriminating their handwriting from adult handwriting. In addition, a number of supplementary features are proposed based on empirical study and observations and are combined with CNN-extracted features to augment the child and adult writer-group classification. Lastly, the performance of the extracted deep and supplementary features is evaluated and compared using different classifiers, comprising Softmax, support vector machine (SVM), k-nearest neighbor (KNN), and random forest (RF), as well as different dataset combinations from Hijja for child data and AHCD for adult data. Our findings highlight that the training strategy is crucial, and the inclusion of adult data is influential in achieving an increased accuracy of up to around 93% in child handwritten character recognition. Moreover, the fusion of the proposed supplementary features with the deep features attains an improved performance in child handwriting discrimination by up to around 94%.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] A Deep Learning Approach for Handwritten Arabic Names Recognition
    Mustafa, Mohamed Elhafiz
    Elbashir, Murtada Khalafallah
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (01) : 678 - 682
  • [22] Deep Learning Application for Handwritten Arabic Word Recognition
    Alzrrog, Nori
    Bousquet, Jean-Francois
    El-Feghi, Idris
    2022 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2022, : 95 - 100
  • [23] Arabic Handwritten Recognition Using Deep Learning: A Survey
    Naseem Alrobah
    Saleh Albahli
    Arabian Journal for Science and Engineering, 2022, 47 : 9943 - 9963
  • [24] A Deep Learning-based Unified Solution for Character Recognition
    Das, Avishek
    Rabby, A. K. M. Shahariar Azad
    Kowsar, Ibna
    Rahman, Fuad
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1671 - 1677
  • [25] Research on Offline Handwritten Chinese Character Recognition Based on Deep Learning
    Hao, Qiuyun
    Wu, Xiaoming
    Zhang, Sen
    Zhang, Peng
    Ma, Xiaofeng
    Jiang, Jingsai
    2019 9TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST2019), 2019, : 470 - 474
  • [26] Sunspot drawings handwritten character recognition method based on deep learning
    Zheng, Sheng
    Zeng, Xiangyun
    Lin, Ganghua
    Zhao, Cui
    Feng, Yongli
    Tao, Jinping
    Zhu, Daoyuan
    Xiong, Li
    NEW ASTRONOMY, 2016, 45 : 54 - 59
  • [27] Deep Learning Based Large Scale Handwritten Devanagari Character Recognition
    Acharya, Shailesh
    Pant, Ashok Kumar
    Gyawali, Prashnna Kumar
    2015 9TH INTERNATIONAL CONFERENCE ON SOFTWARE, KNOWLEDGE, INFORMATION MANAGEMENT AND APPLICATIONS (SKIMA), 2015,
  • [28] Hybrid Handwriting Character Recognition with Transfer Deep Learning
    Can, Ferit
    Yilmaz, Atinc
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [29] Deep Learning for Handwritten Java']Javanese Character Recognition
    Rismiyati
    Khadijah
    Nurhadiyatna, Adi
    2017 1ST INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS), 2017, : 59 - 63
  • [30] Handwritten Character Recognition Based on the Specificity and the Singularity of the Arabic Language
    Boulid, Youssef
    Souhar, Abdelghani
    Elkettani, Mohamed Youssfi
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2017, 4 (04): : 45 - 53