Lightweight Attention Network for Very High-Resolution Image Semantic Segmentation

被引:10
|
作者
Guan, Renchu [1 ]
Wang, Mingming [1 ]
Bruzzone, Lorenzo [2 ]
Zhao, Haishi [1 ]
Yang, Chen [3 ,4 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
[2] Univ Trento, Dept Informat Engn & Comp Sci, I-38050 Trento, Italy
[3] Jilin Univ, Coll Earth Sci, Changchun 130061, Peoples R China
[4] Chinese Acad Sci, Key Lab Lunar & Deep Space Explorat, Natl Astron Observ, Beijing 100012, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantic segmentation; Remote sensing; Semantics; Feature extraction; Task analysis; Computational modeling; Covariance matrices; Covariance; lightweight; position information; remote sensing; semantic segmentation; very high-resolution (VHR) images; AGGREGATION; RECOGNITION;
D O I
10.1109/TGRS.2023.3272614
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Semantic segmentation is one of the most challenging tasks for very high-resolution (VHR) remote sensing applications. Deep convolutional neural networks (DCNNs) based on the attention mechanism have shown outstanding performance in VHR remote sensing images semantic segmentation. However, the existing attention-guided methods require the estimation of a large number of parameters that are affected by the limited number of available labeled samples that results in underperforming segmentation results. In this article, we propose a multistage feature fusion lightweight (MSFFL) model to greatly reduce the number of parameters and improve the accuracy of semantic segmentation. In this model, two parallel enhanced attention modules, i.e., the spatial attention module (SAM) and the channel attention module (CAM), are designed by introducing encoding position information. Then, a covariance calculation strategy is adopted to recalibrate the generated attention maps. The integration of enhanced attention modules into the proposed lightweight module results in an efficient lightweight attention network (LiANet). The performance of the proposed LiANet is assessed on two benchmark datasets. Experimental results demonstrate that LiANet can achieve promising performance with a small number of parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A High-Resolution Network with Strip Attention for Retinal Vessel Segmentation
    Ye, Zhipin
    Liu, Yingqian
    Jing, Teng
    He, Zhaoming
    Zhou, Ling
    SENSORS, 2023, 23 (21)
  • [22] MsanlfNet: Semantic Segmentation Network With Multiscale Attention and Nonlocal Filters for High-Resolution Remote Sensing Images
    Bai, Lin
    Lin, Xiangyuan
    Ye, Zhen
    Xue, Dongling
    Yao, Cheng
    Hui, Meng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [23] SCAttNet: Semantic Segmentation Network With Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images
    Li, Haifeng
    Qiu, Kaijian
    Chen, Li
    Mei, Xiaoming
    Hong, Liang
    Tao, Chao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 905 - 909
  • [24] Semantic Segmentation of Urban Buildings Using a High-Resolution Network (HRNet) with Channel and Spatial Attention Gates
    Seong, Seonkyeong
    Choi, Jaewan
    REMOTE SENSING, 2021, 13 (16)
  • [25] We Need to Communicate: Communicating Attention Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Meng, Xichen
    Zhu, Liqun
    Han, Yilong
    Zhang, Hanchao
    REMOTE SENSING, 2023, 15 (14)
  • [26] Cascaded CNN and global-local attention transformer network-based semantic segmentation for high-resolution remote sensing image
    Liu, Xiaohui
    Zhang, Lei
    Wang, Rui
    Li, Xiaoyu
    Xu, Jiyang
    Lu, Xiaochen
    Journal of Applied Remote Sensing, 1600, 18 (03):
  • [27] Semantic segmentation of high-resolution images
    Juhong WANG
    Bin LIU
    Kun XU
    Science China(Information Sciences), 2017, 60 (12) : 256 - 261
  • [28] Semantic segmentation of high-resolution images
    Juhong Wang
    Bin Liu
    Kun Xu
    Science China Information Sciences, 2017, 60
  • [29] Semantic segmentation of high-resolution images
    Wang, Juhong
    Liu, Bin
    Xu, Kun
    SCIENCE CHINA-INFORMATION SCIENCES, 2017, 60 (12) : 123101:1 - 123101:6
  • [30] Random Region Matting for the High-Resolution PolSAR Image Semantic Segmentation
    Ni, Jun
    Zhang, Fan
    Ma, Fei
    Yin, Qiang
    Xiang, Deliang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3040 - 3051