New Lower Bounds for Cap Sets

被引:2
|
作者
Tyrrell, Fred [1 ]
机构
[1] Univ Bristol, Fry Bldg, Bristol, England
关键词
cap sets; finite field; arithmetic progressions; SAT solver; SUBSETS;
D O I
10.19086/da.91076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A cap set is a subset of F-3(n) with no solutions to x + y + z = 0 other than when x = y = z. In this paper, we provide a new lower bound on the size of a maximal cap set. Building on a construction of Edel, we use improved computational methods and new theoretical ideas to show that, for large enough n, there is always a cap set in F-3(n) of size at least 2.218(n).
引用
下载
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [41] Lower bounds for the minimum diameter of integral point sets
    Nozaki, Hiroshi
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 56 : 139 - 143
  • [42] Lower Bounds for Nodal Sets of Dirichlet and Neumann Eigenfunctions
    Sinan Ariturk
    Communications in Mathematical Physics, 2013, 317 : 817 - 825
  • [43] Lower Bounds for Maximal Matchings and Maximal Independent Sets
    Balliu, Alkida
    Brandt, Sebastian
    Hirvonen, Juho
    Olivetti, Dennis
    Rabie, Mikael
    Suomela, Jukka
    JOURNAL OF THE ACM, 2021, 68 (05)
  • [44] Lower bounds for the cardinality of minimal blocking sets in projective spaces
    Bokler, M
    DISCRETE MATHEMATICS, 2003, 270 (1-3) : 13 - 31
  • [45] Lower bounds on Ricci curvature and quantitative behavior of singular sets
    Cheeger, Jeff
    Naber, Aaron
    INVENTIONES MATHEMATICAE, 2013, 191 (02) : 321 - 339
  • [46] Lower Bounds on Correlation of Z-Complementary Code Sets
    Lifang Feng
    Pingzhi Fan
    Xianwei Zhou
    Wireless Personal Communications, 2013, 72 : 1475 - 1488
  • [47] On the Consecutive Sets of Defining Sequence for Lower Bounds on Cyclic Codes
    Zheng, Junru
    Kaida, Takayasu
    2017 EIGHTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2017, : 178 - 181
  • [48] Sparse selfreducible sets and polynomial size circuit lower bounds
    Buhrman, H
    Torenvliet, L
    Unger, F
    STACS 2006, PROCEEDINGS, 2006, 3884 : 455 - 468
  • [50] Lower bounds on Ricci curvature and quantitative behavior of singular sets
    Jeff Cheeger
    Aaron Naber
    Inventiones mathematicae, 2013, 191 : 321 - 339