RAN: Region-Aware Network for Remote Sensing Image Super-Resolution

被引:3
|
作者
Liu, Baodi [1 ,2 ]
Zhao, Lifei [3 ]
Shao, Shuai [4 ]
Liu, Weifeng [1 ]
Tao, Dapeng [5 ,6 ]
Cao, Weijia [7 ]
Zhou, Yicong [8 ]
机构
[1] China Univ Petr East China, Coll Control Sci & Engn, Qingdao 266580, Peoples R China
[2] State Key Lab Shale Oil & Gas Enrichment Mech & E, Beijing 100083, Peoples R China
[3] China Univ Petr East China, Coll Oceanog & Space Informat, Qingdao 266580, Peoples R China
[4] Zhejiang Lab, Hangzhou 311121, Peoples R China
[5] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650504, Yunnan, Peoples R China
[6] Yunnan United Vis Technol Co Ltd, Kunming 650299, Peoples R China
[7] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100045, Peoples R China
[8] Univ Macau, Fac Sci & Technol, Dept Comp & Informat Sci, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Attention mechanism; contrastive learning; graph neural network; remote sensing (RS) image superresolution (SR);
D O I
10.1109/TGRS.2023.3330876
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The remote sensing (RS) image super-resolution (SR) algorithm aims to reconstruct a high-resolution (HR) image with rich texture details from a given low-resolution (LR) image, improving the spatial resolution. It has been widely concerned in RS image processing and application. Most current deep-learning-based methods rely on paired training datasets. However, most datasets are often based on bicubic degradation. This single construction way limits the performance of the pretrained network. Moreover, SR is an ill-posed problem in that multiple SR images are constructed from a single LR input. This article proposes a region-aware network (RAN) for RS image SR to alleviate the above issues. First, we introduce the contrastive learning strategy to mine the latent degraded representation of the image and serve as the prior knowledge of the network. Considering the RS images are acquired in specific scenes that have apparent self-similarity. Then, we propose a region-aware module (RAM) based on attention mechanisms and the graph neural network to explore region information and cross-patch self-similarity. Extensive experiments have demonstrated that the proposed RAN adapts to RS image SR tasks with various degradations and performs better in constructing texture information.
引用
下载
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] REMOTE SENSING IMAGE SUPER-RESOLUTION VIA DILATED CONVOLUTION NETWORK WITH GRADIENT PRIOR
    Liu, Ziyu
    Feng, Ruyi
    Wang, Lizhe
    Zhong, Yanfei
    Zhang, Liangpei
    Zeng, Tieyong
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2402 - 2405
  • [42] Efficient Swin Transformer for Remote Sensing Image Super-Resolution
    Kang, Xudong
    Duan, Puhong
    Li, Jier
    Li, Shutao
    IEEE Transactions on Image Processing, 2024, 33 : 6367 - 6379
  • [43] Saliency-Guided Remote Sensing Image Super-Resolution
    Liu, Baodi
    Zhao, Lifei
    Li, Jiaoyue
    Zhao, Hengle
    Liu, Weifeng
    Li, Ye
    Wang, Yanjiang
    Chen, Honglong
    Cao, Weijia
    REMOTE SENSING, 2021, 13 (24)
  • [44] Coupled Adversarial Training for Remote Sensing Image Super-Resolution
    Lei, Sen
    Shi, Zhenwei
    Zou, Zhengxia
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3633 - 3643
  • [45] A Super-resolution Method of Remote Sensing Image Using Transformers
    Ye, Chongjun
    Yan, Lingyu
    Zhang, Yucheng
    Zhan, Jun
    Yang, Jie
    Wang, Junfang
    PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 2, 2021, : 905 - 910
  • [46] Remote Sensing Image Super-Resolution Based on Lorentz Fitting
    Guoxing Huang
    Yipeng Liu
    Weidang Lu
    Yu Zhang
    Hong Peng
    Mobile Networks and Applications, 2022, 27 : 1615 - 1628
  • [47] A Comprehensive Benchmark for Optical Remote Sensing Image Super-Resolution
    Aybar, Cesar
    Montero, David
    Donike, Simon
    Kalaitzis, Freddie
    Gomez-Chova, Luis
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [48] Remote Sensing Image Super-Resolution Based on Lorentz Fitting
    Huang, Guoxing
    Liu, Yipeng
    Lu, Weidang
    Zhang, Yu
    Peng, Hong
    MOBILE NETWORKS & APPLICATIONS, 2022, 27 (04): : 1615 - 1628
  • [49] Region Attention Network For Single Image Super-resolution
    Du, Xiaobiao
    Liu, Chongjin
    Yang, Xiaoling
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [50] Dual-Resolution Local Attention Unfolding Network for Optical Remote Sensing Image Super-Resolution
    Shi, Mengyang
    Gao, Yesheng
    Chen, Lin
    Liu, Xingzhao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19