SINDy-CRN: Sparse Identification of Chemical Reaction Networks from Data

被引:0
|
作者
Bhatt, Nirav [1 ,2 ]
Jayawardhana, Bayu [3 ,4 ]
Plaza, Santiago Sanchez-Escalonilla [3 ,4 ]
机构
[1] Indian Inst Technol, Dept Biotechnol, Madras, Tamil Nadu, India
[2] Indian Inst Technol, Res Ctr Data Sci, Madras, Tamil Nadu, India
[3] Indian Inst Technol, AI DSAI, Madras, Tamil Nadu, India
[4] Univ Groningen, Engn & Technol Inst Groningen, Fac Sci & Engn, NL-9747AG Groningen, Netherlands
基金
荷兰研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work considers an important problem of identifying the dynamics of chemical reaction networks from time-series data. We propose an approach to identify complex chemical reaction networks (CRN) from concentration data using the concept of sparse model identification. Particularly, we demonstrate challenges associated with the application of the sparse identification of nonlinear dynamics (SINDy) and its variants to data obtained from CRNs. We develop a SINDyCRN algorithm based on the properties of CRNs for identifying governing equations of a CRN. The proposed algorithm is illustrated using a numerical simulation example.
引用
下载
收藏
页码:3512 / 3518
页数:7
相关论文
共 50 条
  • [41] Sparse identification method of extracting hybrid energy harvesting system from observed data
    Sun, Ya-Hui
    Zeng, Yuan-Hui
    Yang, Yong-Ge
    CHINESE PHYSICS B, 2022, 31 (12)
  • [42] Autonomous Discovery of Unknown Reaction Pathways from Data by Chemical Reaction Neural Network
    Ji, Weiqi
    Deng, Sili
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (04): : 1082 - 1092
  • [43] Dynamic reconstruction from noise contaminated data with sparse Bayesian recurrent neural networks
    Mirikitani, Derrick T.
    Park, Incheon
    Daoudi, Mohammed
    AMS 2007: FIRST ASIA INTERNATIONAL CONFERENCE ON MODELLING & SIMULATION ASIA MODELLING SYMPOSIUM, PROCEEDINGS, 2007, : 409 - +
  • [44] UAV-assisted data gathering from a sparse wireless sensor adaptive networks
    Karegar, Pejman A.
    Al-Anbuky, Adnan
    WIRELESS NETWORKS, 2023, 29 (03) : 1367 - 1384
  • [45] UAV-assisted data gathering from a sparse wireless sensor adaptive networks
    Pejman A. Karegar
    Adnan Al-Anbuky
    Wireless Networks, 2023, 29 : 1367 - 1384
  • [46] Fault identification for power transformer based on dissolved gas in oil data using sparse convolutional neural networks
    Liu, Zhijian
    He, Wei
    Liu, Hang
    Luo, Linglin
    Zhang, Dechun
    Niu, Ben
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2024, 18 (03) : 517 - 529
  • [47] Identification of functional networks in resting state fMRI data using adaptive sparse representation and affinity propagation clustering
    Li, Xuan
    Wang, Haixian
    FRONTIERS IN NEUROSCIENCE, 2015, 9
  • [48] PARAMETER ESTIMATION FROM INDUSTRIAL DATA IN CHEMICAL-REACTION ENGINEERING
    HOFMANN, H
    CHIMIA, 1975, 29 (04) : 159 - 165
  • [49] Experimental design for the identification of hybrid reaction models from transient data
    Brendel, Marc
    Marquardt, Wolfgang
    CHEMICAL ENGINEERING JOURNAL, 2008, 141 (1-3) : 264 - 277
  • [50] Modeling of Hidden Structures Using Sparse Chemical Shift Data from NMR Relaxation Dispersion
    Fenwick, R. Bryn
    Oyen, David
    van den Bedem, Henry
    Dyson, H. Jane
    Wright, Peter E.
    BIOPHYSICAL JOURNAL, 2021, 120 (02) : 296 - 305