SINDy-CRN: Sparse Identification of Chemical Reaction Networks from Data

被引:0
|
作者
Bhatt, Nirav [1 ,2 ]
Jayawardhana, Bayu [3 ,4 ]
Plaza, Santiago Sanchez-Escalonilla [3 ,4 ]
机构
[1] Indian Inst Technol, Dept Biotechnol, Madras, Tamil Nadu, India
[2] Indian Inst Technol, Res Ctr Data Sci, Madras, Tamil Nadu, India
[3] Indian Inst Technol, AI DSAI, Madras, Tamil Nadu, India
[4] Univ Groningen, Engn & Technol Inst Groningen, Fac Sci & Engn, NL-9747AG Groningen, Netherlands
基金
荷兰研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work considers an important problem of identifying the dynamics of chemical reaction networks from time-series data. We propose an approach to identify complex chemical reaction networks (CRN) from concentration data using the concept of sparse model identification. Particularly, we demonstrate challenges associated with the application of the sparse identification of nonlinear dynamics (SINDy) and its variants to data obtained from CRNs. We develop a SINDyCRN algorithm based on the properties of CRNs for identifying governing equations of a CRN. The proposed algorithm is illustrated using a numerical simulation example.
引用
下载
收藏
页码:3512 / 3518
页数:7
相关论文
共 50 条
  • [1] Sparse Identification in Chemical Master Equations for Monomolecular Reaction Networks
    Kim, Kwang-Ki K.
    Jang, Hong
    Gopaluni, R. Bhushan
    Lee, Jay H.
    Braatz, Richard D.
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 3698 - 3703
  • [2] Learning Chemical Reaction Networks from Trajectory Data
    Zhang, Wei
    Klus, Stefan
    Conrad, Tim
    Schuette, Christof
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (04): : 2000 - 2046
  • [3] On sparse identification of complex dynamical systems: A study on discovering influential reactions in chemical reaction networks
    Harirchi, Farshad
    Kim, Doohyun
    Khalil, Omar
    Liu, Sijia
    Elvati, Paolo
    Baranwal, Mayank
    Hero, Alfred
    Violi, Angela
    FUEL, 2020, 279 (279)
  • [4] An Online Data-Driven Method to Locate Forced Oscillation Sources From Power Plants Based on Sparse Identification of Nonlinear Dynamics (SINDy)
    Cai, Yaojie
    Wang, Xiaozhe
    Joos, Geza
    Kamwa, Innocent
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (03) : 2085 - 2099
  • [5] Identification of chemical reaction mechanism from batch process data
    Searson, Dominic P.
    Burnham, Samantha C.
    Willis, Mark J.
    Wright, Allen R.
    PROCEEDINGS OF THE 17TH IASTED INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, 2006, : 511 - +
  • [6] Investigating synergies between chemical reaction networks (CRN) and mathematical epidemiology (ME), using the Mathematica package Epid-CRN
    Avram, Florin
    Adenane, Rim
    Halanay, Andrei D.
    Johnston, Matthew D.
    arXiv,
  • [7] Parameter estimation for models of chemical reaction networks from experimental data of reaction rates
    Gasparyan, Manvel
    Van Messem, Arnout
    Rao, Shodhan
    INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (02) : 392 - 407
  • [8] Structural identification of biochemical reaction networks from population snapshot data
    Cinquemani, Eugenio
    IFAC PAPERSONLINE, 2017, 50 (01): : 12629 - 12634
  • [9] Some consequences of thermodynamic feasibility for chemical reaction networks Considering thermodynamic feasibility in current CRN research
    Neumann, Gunter
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (05) : 1260 - 1282
  • [10] Identification of wood rings from sparse tomographic data
    Cinquemani, Eugenio
    Picci, Giorgio
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 3706 - 3711