Robust quantum state transfer with topologically protected nodes

被引:3
|
作者
Chang, Yanlong [1 ]
Xue, Jiaojiao [1 ]
Han, Yuxiang [1 ]
Wang, Xiaoli [1 ]
Li, Hongrong [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; SINGLE ATOMS; DYNAMICS; QUTIP;
D O I
10.1103/PhysRevA.108.062409
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Robust quantum state transfer (QST) is the foundation for information exchange among nodes in quantum networks. In this paper, we propose a robust QST protocol that utilizes topological edge modes in the qubit chains to encode (decode) quantum states (flying qubits). By employing qubits with tunable couplings, we construct Su-Schrieffer-Heeger (SSH) chains as the nodes of a quantum network. The end qubit of each SSH chain is dissipatively coupled to a chiral waveguide, and the dissipative strength is a constant. We refer to the SSH chain with a dissipation channel at the end qubit as the non -Hermitian SSH chain. Comparing the symmetry and energy spectra of the non -Hermitian SSH chain with those of the SSH chain, our analysis reveals that the dissipative dynamics of the topological edge state in the non -Hermitian SSH chain are governed by its imaginary spectra. The edge mode with the imaginary spectrum can be used to encode (decode) quantum states (flying qubits), thereby enabling robust QST between two remote mirrored non -Hermitian SSH chains. Our numerical simulations demonstrate that high-fidelity QST can be achieved even in the presence of coupling errors. Furthermore, we extend our analysis to consider QST in imperfect chiral waveguides, providing insights into the robustness of our protocol under realistic conditions. Our discussion is applicable to various quantum platforms and holds significant implications for constructing large-scale quantum networks.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Topologically protected quantum states and quantum computing in Josephson junctions arrays
    Ioffe, LB
    Feigel'man, MV
    Douçot, B
    LOW TEMPERATURE PHYSICS, 2004, 30 (7-8) : 634 - 645
  • [22] Robust manipulation of light using topologically protected plasmonic modes
    Liu, Chenxu
    Dutt, M. V. Gurudev
    Pekker, David
    OPTICS EXPRESS, 2018, 26 (03): : 2857 - 2872
  • [23] Quantum state transfer and entanglement distribution among distant nodes in a quantum network
    Cirac, JI
    Zoller, P
    Kimble, HJ
    Mabuchi, H
    PHYSICAL REVIEW LETTERS, 1997, 78 (16) : 3221 - 3224
  • [24] Quantum Bits with Macroscopic Topologically Protected States in Semiconductor Devices
    Jaworowski, Blazej
    Hawrylak, Pawel
    APPLIED SCIENCES-BASEL, 2019, 9 (03):
  • [25] Topologically Protected Valley-Dependent Quantum Photonic Circuits
    Chen, Yang
    He, Xin-Tao
    Cheng, Yu-Jie
    Qiu, Hao-Yang
    Feng, Lan-Tian
    Zhang, Ming
    Dai, Dao-Xin
    Guo, Guang-Can
    Dong, Jian-Wen
    Ren, Xi-Feng
    PHYSICAL REVIEW LETTERS, 2021, 126 (23)
  • [26] Observation of topologically protected bound states in photonic quantum walks
    Kitagawa, Takuya
    Broome, Matthew A.
    Fedrizzi, Alessandro
    Rudner, Mark S.
    Berg, Erez
    Kassal, Ivan
    Aspuru-Guzik, Alan
    Demler, Eugene
    White, Andrew G.
    NATURE COMMUNICATIONS, 2012, 3
  • [27] Realization of topologically protected quantum bits in a Josephson junction array
    Ioffe, LB
    Feigel'man, MV
    PHYSICS-USPEKHI, 2003, 46 (07) : 759 - 764
  • [28] Topologically protected quantum bits using Josephson junction arrays
    L. B. Ioffe
    M. V. Feigel'man
    A. Ioselevich
    D. Ivanov
    M. Troyer
    G. Blatter
    Nature, 2002, 415 : 503 - 506
  • [29] Topologically protected quantum bits using Josephson junction arrays
    Ioffe, LB
    Feigel'man, MV
    Ioselevich, A
    Ivanov, D
    Troyer, M
    Blatter, G
    NATURE, 2002, 415 (6871) : 503 - 506
  • [30] Observation of topologically protected bound states in photonic quantum walks
    Takuya Kitagawa
    Matthew A. Broome
    Alessandro Fedrizzi
    Mark S. Rudner
    Erez Berg
    Ivan Kassal
    Alán Aspuru-Guzik
    Eugene Demler
    Andrew G. White
    Nature Communications, 3