The spatiotemporal variation of land surface heat fluxes in Tibetan Plateau during 2001-2022

被引:2
|
作者
Li, Na [1 ]
Zhao, Ping [2 ,4 ]
Zhou, Changyan [3 ]
机构
[1] Chengdu Univ Informat Technol, Coll Atmospher Sci, Plateau Atmosphere & Environm Key Lab Sichuan Prov, Chengdu, Peoples R China
[2] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China
[3] China Meteorol Adm, Inst Plateau Meteorol, Heavy Rain & Drought Flood Disasters Plateau & Bas, Chengdu, Peoples R China
[4] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, 46 Zhong Guan Cun South Ave, Beijing 100081, Peoples R China
关键词
Tibetan Plateau; Maximum entropy production model; Multi-Source datasets; Sensible heat flux; Latent heat flux; ENTROPY-PRODUCTION-MODEL; ENERGY BUDGETS; EVAPOTRANSPIRATION; REANALYSIS; UNCERTAINTIES; BALANCE; WATER;
D O I
10.1016/j.atmosres.2023.107081
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The surface energy budget is important for understanding of energy and water cycle processes in the Tibetan Plateau (TP). In this study, the daily sensible (SH) and latent (LE) heat fluxes at the horizontal resolution of 1 degrees are first estimated using the maximum entropy production (MEP) model (hereinafter SHMEP and LEMEP) in the entire TP during 2001-2022. The MEP model is built on physical and statistical principles to simulate surface heat fluxes. The surface net radiation, soil moisture (SM), and land surface temperature (LST) are the main driving variables for MEP model. To select the relatively accurate MEP input data, the merged surface net radiation (Rn-merged) under all-sky conditions are generated from CERES, ISCCP-FH, and ERA5 using the Bayesian Model Averaging scheme. Besides, the TP SM and LST from various data sources are evaluated using the in-situ observations at site scale. Based on the daily Rn-merged, ERA5 SM, CERES LST, and the MEP model, the daily SH and LE are estimated in the entire TP. The results show the daily SHMEP and LEMEP perform well at the validation sites, with the regional mean correlation coefficient (R) above 0.7, root-mean-square error (RMSE) of <19 W m(-2), absolute value of bias and mean absolute error (MAE) below 11 W m(-2). The monthly SHMEP has the regional mean R of 0.96 and RMSE of 6.30 W m(-2) at all the measurement stations. For LEMEP, the regional mean R and RMSE values are 0.93 and 10.01 W m(-2), respectively. The MEP simulation results are superior to the SH and LE in ERA5, ERA-Interim, MERRA-2, and JRA-55 reanalysis datasets and previous studies, especially for LE. Based on this new dataset, the spatial and temporal varying characteristics of SH and LE in the TP are analyzed. The annual mean SHMEP value are large in the western TP, the Qaidam Basin in the northern TP, and the Himalaya ranges, and small in the southeastern TP. The annual mean LEMEP has the maximum value in southeastern TP, and minimum value in western TP and the Qaidam Basin. The annual mean SHMEP and LEMEP over the entire TP are 34.79 W m(-2) and 20.16 W m(-2), with the significant declining trends of -0.17 W m(-2) year(-1) and - 0.052 W m(-2) year(-1) during the study period, respectively. The spatial distributions of the MEP surface heat fluxes and their trends are mainly influenced by the model inputs of Rn and SM in the TP.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Spatiotemporal variation characteristics of snowfall-precipitation ratio on the Tibetan Plateau
    She W.
    Yang Q.
    Yang K.
    Jiang Y.
    Wang G.
    Shuikexue Jinzhan/Advances in Water Science, 2024, 35 (02): : 348 - 356
  • [42] Recent trends in land surface temperature on the Tibetan Plateau
    Oku, Yuichiro
    Ishikawa, Hirohiko
    Haginoya, Shigenori
    Ma, Yaoming
    JOURNAL OF CLIMATE, 2006, 19 (12) : 2995 - 3003
  • [43] Estimation of Surface Heat Fluxes Over the Central Tibetan Plateau using the Maximum Entropy Production Model
    Li, Na
    Zhao, Ping
    Wang, Jingfeng
    Deng, Yi
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (13) : 6827 - 6840
  • [44] Validation and Spatiotemporal Analysis of Surface Net Radiation from CRA/Land and ERA5-Land over the Tibetan Plateau
    Gao, Limimg
    Zhang, Yaonan
    Zhang, Lele
    ATMOSPHERE, 2023, 14 (10)
  • [45] Variations of Surface Heat Fluxes over the Tibetan Plateau before and after the Onset of the South Asian Summer Monsoon during 1979–2016
    Yizhe Han
    Weiqiang Ma
    Yaoming Ma
    Cuiyan Sun
    Journal of Meteorological Research, 2019, 33 : 491 - 500
  • [46] Variations of Surface Heat Fluxes over the Tibetan Plateau before and after the Onset of the South Asian Summer Monsoon during 1979–2016
    Yizhe HAN
    Weiqiang MA
    Yaoming MA
    Cuiyan SUN
    Journal of Meteorological Research, 2019, 33 (03) : 491 - 500
  • [47] Analysing Surface Heat Fluxes Variation with Imperviousness and Land Surface Temperature from Landsat Data
    Bala, Ruchi
    Yadav, Vijay Pratap
    Nagesh Kumar, D.
    Prasad, Rajendra
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, : 1167 - 1181
  • [48] How the characteristics of land cover changes affect vegetation greenness in Guangdong, a rapid urbanization region of China during 2001-2022
    Wu, Yuzhen
    Qiu, Xinxin
    Liang, Dongmei
    Zeng, Xiangan
    Liu, Qinyuan
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (11)
  • [49] Characteristics of land-atmosphere energy and turbulent fluxes over the plateau steppe in central Tibetan Plateau
    Li, MaoShan
    Su, ZhongBo
    Ma, YaoMing
    Chen, XueLong
    Zhang, Lang
    Hu, ZeYong
    SCIENCES IN COLD AND ARID REGIONS, 2016, 8 (02): : 103 - 115
  • [50] Characteristics of land-atmosphere energy and turbulent fluxes over the plateau steppe in central Tibetan Plateau
    MaoShan Li
    ZhongBo Su
    YaoMing Ma
    XueLong Chen
    Lang Zhang
    ZeYong Hu
    Sciences in Cold and Arid Regions, 2016, 8 (02) : 103 - 115