Spatio-Temporal Avoidance of Predicted Occupancy in Human-Robot Collaboration

被引:1
|
作者
Flowers, Jared [1 ]
Faroni, Marco [2 ]
Wiens, Gloria [1 ]
Pedrocchi, Nicola [3 ]
机构
[1] Univ Florida, Mech & Aerosp Engn, Gainesville, FL 32611 USA
[2] Univ Michigan, Dept Robot, Ann Arbor, MI 48109 USA
[3] CNR, Ist Sistemi & Tecnol Ind Intelligenti Manifatturi, Milan, Italy
关键词
SAFETY;
D O I
10.1109/RO-MAN57019.2023.10309469
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses human-robot collaboration (HRC) challenges of integrating predictions of human activity to provide a proactive-n-reactive response capability for the robot. Prior works that consider current or predicted human poses as static obstacles are too nearsighted or too conservative in planning, potentially causing delayed robot paths. Alternatively, time-varying prediction of human poses would enable robot paths that avoid anticipated human poses, synchronized dynamically in time and space. Herein, a proactive path planning method, denoted STAP, is presented that uses spatio-temporal human occupancy maps to find robot trajectories that anticipate human movements, allowing robot passage without stopping. In addition, STAP anticipates delays from robot speed restrictions required by ISO/TS 15066 speed and separation monitoring (SSM). STAP also proposes a sampling-based planning algorithm based on RRT* to solve the spatio-temporal motion planning problem and find paths of minimum expected duration. Experimental results show STAP generates paths of shorter duration and greater average robot-human separation distance throughout tasks. Additionally, STAP more accurately estimates robot trajectory durations in HRC, which are useful in arriving at proactive-n-reactive robot sequencing.
引用
收藏
页码:2162 / 2168
页数:7
相关论文
共 50 条
  • [41] Safe Physical Human-Robot Collaboration
    Flacco, Fabrizio
    De Luca, Alessandro
    [J]. 2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 2072 - 2072
  • [42] Interactive learning in human-robot collaboration
    Ogata, T
    Masago, N
    Sugano, S
    Tani, J
    [J]. IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, : 162 - 167
  • [43] Spatio-Temporal Coordination of Mobile Robot Swarms
    Graff, Daniel
    Karnapke, Reinhardt
    [J]. 2016 IEEE 41ST CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN), 2016, : 511 - 514
  • [44] Spatio-temporal multi-robot routing
    Chopra, Smriti
    Egerstedt, Magnus
    [J]. AUTOMATICA, 2015, 60 : 173 - 181
  • [45] Handover Control for Human-Robot and Robot-Robot Collaboration
    Costanzo, Marco
    De Maria, Giuseppe
    Natale, Ciro
    [J]. FRONTIERS IN ROBOTICS AND AI, 2021, 8
  • [46] IVO Robot: A New Social Robot for Human-Robot Collaboration
    Laplaza, Javier
    Rodriguez, Nicolas
    Dominguez-Vidal, J. E.
    Herrero, Fernando
    Hernandez, Sergi
    Lopez, Alejandro
    Sanfeliu, Alberto
    Garrell, Anais
    [J]. PROCEEDINGS OF THE 2022 17TH ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI '22), 2022, : 860 - 864
  • [47] A descriptive behavior intention inference framework using spatio-temporal semantic features for human-robot real-time interaction
    Wang, Liangliang
    Huo, Guanglei
    Li, Ruifeng
    Liang, Peidong
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128
  • [48] Spatio-temporal contrast sensitivity and obstacle avoidance in glaucoma
    Elliott, JL
    Kuyk, TK
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1997, 38 (04) : 3850 - 3850
  • [49] Anticipatory Robot Control for Efficient Human-Robot Collaboration
    Huang, Chien-Ming
    Mutlu, Bilge
    [J]. ELEVENTH ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN ROBOT INTERACTION (HRI'16), 2016, : 83 - 90
  • [50] Dynamic spatio-temporal patterns of metapopulation occupancy in patchy habitats
    Bertassello, L. E.
    Bertuzzo, E.
    Botter, G.
    Jawitz, J. W.
    Aubeneau, A. F.
    Hoverman, J. T.
    Rinaldo, A.
    Rao, P. S. C.
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (01):