Achieving stable interface for lithium metal batteries using fluoroethylene carbonate-modified garnet-type Li6.4La3Zr1.4Ta0.6O12 composite electrolyte

被引:10
|
作者
Wang, Qiujun [1 ]
Su, Ya [1 ]
Zhu, Weiqi [1 ]
Li, Zhaojin [1 ]
Zhang, Di [1 ]
Wang, Huan [1 ]
Sun, Huilan [1 ]
Wang, Bo [1 ]
Zhou, Dan [2 ]
Fan, Li-Zhen [2 ]
机构
[1] Hebei Univ Sci & Technol, Sch Mat Sci & Engn, Hebei Key Lab Flexible Funct Mat, Shijiazhuang 050000, Peoples R China
[2] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Fec; Grant; -type; Composite gel electrolyte; Stable interface; POLYMER ELECTROLYTES; CATHODE; SOLVATION; ANODE; IONS;
D O I
10.1016/j.electacta.2023.142063
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Composite polymer electrolytes (CPEs) with Li6.4La3Zr1.4Ta0.6O12 (LLZTO) ceramic oxide electrolytes are attracting significant interest because of the merits of LLZTO. However, inadequate solid-solid contact between electrolytes and electrodes invariably results in high interfacial impedance, which is harmful to CPEs' perfor-mance. Herein, fluoroethylene carbonate (FEC) additive which possesses excellent ability in guiding uniform Li+ deposition and suppressing Li dendrite growth was introduced into the electrolyte, and novel CPEs were suc-cessfully prepared. It shows a broad electrochemical window of 5.2 V (vs. Li+/Li), low interface impedance, and a high lithium ion migration number of 0.62. As a result, the assembled symmetrical Li/PHTL-FEC-LLZTO/Li cells can run stably for over 500 h at 0.2 mA cm-2. Moreover, the Li metal battery with LiFePO4 (LFP) cathode shows superior cyclic stability with a high initial capacity of 132.9 mAh g-1, and a large retention of 88.5% after 200 cycles at 0.5 C. This excellent electrochemical performance of the battery can be attributed to the employment of FEC additives, which endows promising potential in reducing the interface impedance, promoting lithium uni-form deposition, and stabling interface performance in the electrolyte.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Dual-salt effect on polyethylene oxide/Li6.4La3Zr1.4Ta0.6O12 composite electrolyte for solid-state lithium metal batteries with superior electrochemical performance
    Zhu, Fangyan
    Cheng, Samson Ho-Sum
    Xu, Yi
    Liao, Wenchao
    He, Kangqiang
    Chen, Dazhu
    Liao, Chengzhu
    Cheng, Xin
    Tang, Jiaoning
    Li, Robert K. Y.
    Liu, Chen
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 210
  • [22] Three electrodes analysis of a 3 V-class all-solid-state lithium-ion battery based on garnet-type solid electrolyte Li6.4La3Zr1.4Ta0.6O12
    Jiang, Yue
    Zhu, Xiaohong
    Lai, Wei
    JOURNAL OF POWER SOURCES, 2022, 529
  • [23] Lithium Expulsion from the Solid-State Electrolyte Li6.4La3Zr1.4Ta0.6O12 by Controlled Electron Injection in a SEM
    Xie, Xiaowei
    Xing, Juanjuan
    Hu, Dongli
    Gu, Hui
    Chen, Cheng
    Guo, Xiangxin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (06) : 5978 - 5983
  • [24] Lowering the Interfacial Resistance in Li6.4La3Zr1.4Ta0.6O12| Poly(Ethylene Oxide) Composite Electrolytes
    Kuhnert, Eveline
    Ladenstein, Lukas
    Jodlbauer, Anna
    Slugovc, Christian
    Trimmel, Gregor
    Wilkening, H. Martin R.
    Rettenwander, Daniel
    CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (10):
  • [25] A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties
    Huang, Zeya
    Pang, Wanying
    Liang, Peng
    Jin, Zhehui
    Grundish, Nicholas
    Li, Yutao
    Wang, Chang-An
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (27) : 16425 - 16436
  • [26] Reactive sintering of garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) from pyrochlore precursors prepared using a non-aqueous sol–gel method
    Jinzhao Guo
    J. Mark Weller
    Shize Yang
    M. Harish Bhat
    Candace K. Chan
    Ionics, 2023, 29 : 581 - 590
  • [27] Multiple uniform lithium-ion transport channels in Li6.4La3Zr1.4Ta0.6O12/Ce (OH)3 modified polypropylene composite separator for high-performance lithium metal batteries
    Li, Bangxing
    Kang, Xing
    Wu, Xiaofeng
    Hu, Xiaolin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 671 : 621 - 630
  • [28] An ultrafast rechargeable and high durability lithium metal battery using composite electrolyte with the three-dimensional inorganic framework by Li6.4La3Zr1.4Ta0.6O12 surface functionalization
    Liu, Huirong
    Zhao, Mingliang
    Bai, Xiaodong
    Wang, Panpan
    Wang, Xindong
    Li, Jianling
    ETRANSPORTATION, 2023, 16
  • [29] Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries
    He, Kangqiang
    Chen, Chenglin
    Fan, Rong
    Liu, Chen
    Liao, Chengzhu
    Xu, Yi
    Tang, Jiaoning
    Li, Robert K. Y.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2019, 175 (28-34) : 28 - 34
  • [30] Improving cathode/Li6.4La3Zr1.4Ta0.6O12 electrolyte interface with a hybrid PVDF-HFP-based buffer layer for solid lithium battery
    Hao Yang
    Daobin Mu
    Borong Wu
    Jiaying Bi
    Ling Zhang
    Shengzhu Rao
    Journal of Materials Science, 2020, 55 : 11451 - 11461