Eisenstein cohomology classes for GL N over imaginary quadratic fields

被引:0
|
作者
Bergeron, Nicolas [1 ]
Charollois, Pierre [2 ,3 ]
Garcia, Luis E. [4 ]
机构
[1] PSL Univ, Dept Math & Applicat, ENS, F-75005 Paris, France
[2] Sorbonne Univ, F-75005 Paris, France
[3] Univ Paris Cite, CNRS, IMJ PRG, F-75005 Paris, France
[4] UCL, Dept Math, Gower St, London WC1E 6BT, England
来源
关键词
ADIC L-FUNCTIONS; SPECIAL VALUES; DEDEKIND SUMS; COCYCLES; GL(N);
D O I
10.1515/crelle-2022-0089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the arithmetic of degree N -1 Eisenstein cohomology classes for the locally symmetric spaces attached to GLN over an imaginary quadratic field k. Under natural conditions we evaluate these classes on (N -1)-cycles associated to degree N extensions L/k as linear combinations of generalized Dedekind sums. As a consequence we prove a remarkable conjecture of Sczech and Colmez expressing critical values of L-functions attached to Hecke characters of L as polynomials in Kronecker-Eisenstein series evaluated at torsion points on elliptic curves with complex multiplication by k. We recover in particular the algebraicity of these critical values.
引用
收藏
页码:1 / 40
页数:40
相关论文
共 50 条