On the Cohomology of GL2 and SL2 over Imaginary Quadratic Fields

被引:0
|
作者
Gangl, Herbert [1 ]
Gunnells, Paul E. [2 ]
Hanke, Jonathan [3 ]
Yasaki, Dan [3 ]
机构
[1] Dept Math Sci, Durham, England
[2] Univ Massachusetts, Dept Math & Stat, LGRT 1115L, Amherst, MA USA
[3] Univ North Carolina Greensboro, Dept Math & Stat, Greensboro, NC USA
关键词
cohomology of arithmetic groups; Voronoi reduction theory; linear groups over imaginary quadratic fields; HOMOLOGICAL TORSION; BIANCHI; GROWTH; PSL2;
D O I
10.1080/10586458.2024.2379797
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We report on computations of the cohomology of GL(2)(O-D) and SL2(O-D) , where D < 0 is a fundamental discriminant. These computations go well beyond earlier results of Vogtmann and Scheutzow. We use the technique of homology of Voronoi complexes, and our computations recover the integral cohomology away from the primes 2, 3. We observed exponential growth in the torsion subgroup of H (2) as |D| increases, and compared our data to bounds of Rohlfs.
引用
收藏
页数:18
相关论文
共 50 条