Prediction of BLEVE loads on structures using machine learning and CFD

被引:17
|
作者
Li, Qilin [1 ]
Wang, Yang [2 ]
Li, Ling [1 ]
Hao, Hong [2 ]
Wang, Ruhua [2 ]
Li, Jingde [2 ]
机构
[1] Curtin Univ, Sch Elect Engn Comp & Math Sci, Discipline Comp, Bentley, Australia
[2] Curtin Univ, Ctr Infrastruct Monitoring & Protect, Sch Civil & Mech Engn, Bentley, Australia
关键词
Gas explosion; BLEVE; Transformer; Machine learning; Blast wave; Interaction with structures; CFD; Neural networks; NUMERICAL-SIMULATION; GAS EXPLOSION; SCALE BLEVE; BLAST WAVE;
D O I
10.1016/j.psep.2023.02.008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Boiling Liquid Expanding Vapour Explosions (BLEVEs) are driven by complex fluid dynamics with expanded vapour and flashed liquid. They may generate strong shock waves that lead to catastrophic consequences to personnel and structures in the vicinity. Despite the great interest in safety management and intensive research efforts, reliable and efficient prediction of BLEVE loads on structures is still challenging in practice. Computational Fluid Dynamics (CFD), based on complex physics formulas, can provide more accurate predictions of BLEVE loads than the traditional empirical and TNT-equivalency approaches, but suffers from high computational costs. Data-driven machine learning models offer efficient surrogates but conventional models, including commonly used multi-layer perceptron (MLP), are suboptimal especially for explosions of complex geometry and in complex environment. In this study, a novel machine learning approach, based on the state-of-the-art Transformer neural networks, is developed for BLEVE loads prediction on an idealised structure in the vicinity of BLEVE. Through extensive experiments and rigorous evaluation, it is shown that Transformer can effectively model the structure-wave interaction, yielding accurate pressure and impulse predictions with less than 14% relative errors, which outperforms widely used MLP (20% error) significantly. The developed Transformer model is applied to predict critical parameters of BLEVE loads, including arrive time, rise time and duration. The results demonstrate that Transformer can produce an accurate pressure-time history, yielding a comprehensive characterisation of BLEVE loads on structures.
引用
收藏
页码:914 / 925
页数:12
相关论文
共 50 条
  • [21] RCA Prediction using Machine Learning
    Lalwani, Hiro
    Gupta, Rachit
    Srivastava, Sandeep
    Jayaram, Sahana
    2019 5TH IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2019), 2019,
  • [22] Diabetes Prediction using Machine Learning
    Kharkwal, Tarun
    Meena, Shweta
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (02) : 6999 - 7005
  • [23] Crime Prediction Using Machine Learning
    Ling, Hneah Guey
    Jian, Teng Wei
    Mohanan, Vasuky
    Yeo, Sook Fern
    Jothi, Neesha
    FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE AIOT ERA, VOL 1, FONES-AIOT 2024, 2024, 1035 : 92 - 103
  • [24] Pandemia Prediction Using Machine Learning
    Nasir, Amir
    Makki, Seyed Vahab AL-Din
    Al-Sabbagh, Ali
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (05): : 211 - 214
  • [25] Prediction of Visitors using Machine Learning
    Son, Kyoungho
    Byun, Yungcheol
    Lee, Sangjoon
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATICS AND BIOMEDICAL SCIENCES (ICIIBMS), 2018, : 138 - 139
  • [26] PREDICTION OF MICROCLIMATES USING MACHINE LEARNING
    Sippy, Rachel
    Herrera, Diego
    Gaus, David
    Gangnon, Ronald
    Patz, Jonathan
    Osorio, Jorge
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2019, 101 : 230 - 231
  • [27] Disease Prediction using Machine Learning
    Dubey, Subham
    Banik, Sreerupa
    Ghosh, Deba
    Dey, Akash
    Das, Rishabh
    Dey, Ipsita
    Chowdhury, Sagarika
    Dey, Prianka
    2024 2ND WORLD CONFERENCE ON COMMUNICATION & COMPUTING, WCONF 2024, 2024,
  • [28] Identification of Full-Field Dynamic Loads on Structures Using Computer Vision and Unsupervised Machine Learning
    Roeder, Alexander
    Zhang, Huiying
    Sanchez, Lorenzo
    Yang, Yongchao
    Farrar, Charles
    Mascarenas, David
    SHOCK & VIBRATION, AIRCRAFT/AEROSPACE, ENERGY HARVESTING, ACOUSTICS & OPTICS, VOL 9: PROCEEDINGS OF THE 35TH IMAC, 2017, : 41 - 48
  • [29] Calculation of BLEVE energy and overpressures inside a tunnel using analytical and CFD methods
    Li, Jingde
    Hao, Hong
    Chen, Wensu
    Cheng, Ruishan
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2022, 120
  • [30] Headnote Prediction Using Machine Learning
    Mahar, Sarmad
    Zafar, Sahar
    Nishat, Kamran
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2021, 18 (05) : 678 - 685