An improved hierarchical variational autoencoder for cell-cell communication estimation using single-cell RNA-seq data

被引:4
|
作者
Liu, Shuhui [1 ]
Zhang, Yupei [1 ,2 ]
Peng, Jiajie [1 ,2 ]
Shang, Xuequn [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710129, Shaanxi, Peoples R China
[2] Minist Ind & Informat Technol, Big Data Storage & ManagementLab, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
cell-cell communication; single-cell RNA-seq data; pairwise ligand-receptor; HiVAE model; transfer entropy; LANDSCAPE; GENE;
D O I
10.1093/bfgp/elac056
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Analysis of cell-cell communication (CCC) in the tumor micro-environment helps decipher the underlying mechanism of cancer progression and drug tolerance. Currently, single-cell RNA-Seq data are available on a large scale, providing an unprecedented opportunity to predict cellular communications. There have been many achievements and applications in inferring cell-cell communication based on the known interactions between molecules, such as ligands, receptors and extracellular matrix. However, the prior information is not quite adequate and only involves a fraction of cellular communications, producing many false-positive or false-negative results. To this end, we propose an improved hierarchical variational autoencoder (HiVAE) based model to fully use single-cell RNA-seq data for automatically estimating CCC. Specifically, the HiVAE model is used to learn the potential representation of cells on known ligand-receptor genes and all genes in single-cell RNA-seq data, respectively, which are then utilized for cascade integration. Subsequently, transfer entropy is employed to measure the transmission of information flow between two cells based on the learned representations, which are regarded as directed communication relationships. Experiments are conducted on single-cell RNA-seq data of the human skin disease dataset and the melanoma dataset, respectively. Results show that the HiVAE model is effective in learning cell representations, and transfer entropy could be used to estimate the communication scores between cell types.
引用
收藏
页码:118 / 127
页数:10
相关论文
共 50 条
  • [41] Realistic Cell Type Annotation and Discovery for Single-cell RNA-seq Data
    Zhai, Yuyao
    Chen, Liang
    Deng, Minghua
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 4967 - 4974
  • [42] SCSA: A Cell Type Annotation Tool for Single-Cell RNA-seq Data
    Cao, Yinghao
    Wang, Xiaoyue
    Peng, Gongxin
    FRONTIERS IN GENETICS, 2020, 11
  • [43] Robust identification of perturbed cell types in single-cell RNA-seq data
    Nicol, Phillip B.
    Paulson, Danielle
    Qian, Gege
    Liu, X. Shirley
    Irizarry, Rafael
    Sahu, Avinash D.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [44] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data Reply
    不详
    NATURE BIOTECHNOLOGY, 2016, 34 (06) : 593 - 595
  • [45] Reply to The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    Andrew McDavid
    Greg Finak
    Raphael Gottardo
    Nature Biotechnology, 2016, 34 : 593 - 595
  • [46] Yeast Single-cell RNA-seq, Cell by Cell and Step by Step
    Nadal-Ribelles, Mariona
    Islam, Saiful
    Wei, Wu
    Latorre, Pablo
    Nguyen, Michelle
    de Nadal, Eulalia
    Posas, Francesc
    Steinmetz, Lars M.
    BIO-PROTOCOL, 2019, 9 (17):
  • [47] A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder
    Zixiang Luo
    Chenyu Xu
    Zhen Zhang
    Wenfei Jin
    Scientific Reports, 11
  • [48] A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder
    Luo, Zixiang
    Xu, Chenyu
    Zhang, Zhen
    Jin, Wenfei
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [49] An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
    Sun, Xifang
    Sun, Shiquan
    Yang, Sheng
    CELLS, 2019, 8 (10)
  • [50] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322