Nodal Sets of Eigenfunctions of Sub-Laplacians

被引:0
|
作者
Eswarathasan, Suresh [1 ]
Letrouit, Cyril [2 ,3 ]
机构
[1] Dalhousie Univ, Halifax, NS B3H 4R2, Canada
[2] MIT, Cambridge, MA 02139 USA
[3] Univ Paris Saclay, Lab Math Orsay, CNRS, UMR 8628, Batiment 307, F-91405 Orsay, France
基金
加拿大自然科学与工程研究理事会;
关键词
INEQUALITY;
D O I
10.1093/imrn/rnad219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nodal sets of eigenfunctions of elliptic operators on compact manifolds have been studied extensively over the past decades. In this note, we initiate the study of nodal sets of eigenfunctions of hypoelliptic operators on compact manifolds, focusing on sub-Laplacians. A standard example is the sum of squares of bracket-generating vector fields on compact quotients of the Heisenberg group. Our results show that nodal sets behave in an anisotropic way, which can be analyzed with standard tools from sub-Riemannian geometry such as sub-Riemannian dilations, nilpotent approximation, and desingularization at singular points. Furthermore, we provide a simple example demonstrating that for sub-Laplacians, the Hausdorff measure of nodal sets of eigenfunctions cannot be bounded above by $\sqrt \lambda $, which is the bound conjectured by Yau for Laplace-Beltrami operators on smooth manifolds.
引用
收藏
页码:20670 / 20700
页数:31
相关论文
共 50 条
  • [31] On the nodal sets of toral eigenfunctions
    Bourgain, Jean
    Rudnick, Zeev
    INVENTIONES MATHEMATICAE, 2011, 185 (01) : 199 - 237
  • [32] Nodal sets of Steklov eigenfunctions
    Bellova, Katarina
    Lin, Fang-Hua
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (02) : 2239 - 2268
  • [33] Nodal sets of Steklov eigenfunctions
    Katarína Bellová
    Fang-Hua Lin
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2239 - 2268
  • [34] On the nodal sets of toral eigenfunctions
    Jean Bourgain
    Zeév Rudnick
    Inventiones mathematicae, 2011, 185 : 199 - 237
  • [35] EIGENFUNCTIONS WITH PRESCRIBED NODAL SETS
    Enciso, Alberto
    Peralta-Salas, Daniel
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (02) : 197 - 211
  • [36] ON GREEN FUNCTIONS FOR DIRICHELET SUB-LAPLACIANS ON A QUATERNION HEISENBERG GROUP
    Sabitbek, Bolys
    Suragan, Durvudkhan
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (04)
  • [37] Holomorphic Lp-type for sub-Laplacians on connected Lie groups
    Ludwig, Jean
    Mueller, Detlef
    Souaifi, Sofiane
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (06) : 1297 - 1338
  • [38] The theory of energy for sub-Laplacians with an application to quasi-continuity
    Andrea Bonfiglioli
    Chiara Cinti
    manuscripta mathematica, 2005, 118 : 283 - 309
  • [39] Spectral multipliers for sub-Laplacians on solvable extensions of stratified groups
    Martini, Alessio
    Ottazzi, Alessandro
    Vallarino, Maria
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 136 (01): : 357 - 397
  • [40] The theory of energy for sub-Laplacians with an application to quasi-continuity
    Bonfiglioli, A
    Cinti, C
    MANUSCRIPTA MATHEMATICA, 2005, 118 (03) : 283 - 309