Dynamic Traffic Data in Machine-Learning Air Quality Mapping Improves Environmental Justice Assessment

被引:4
|
作者
Wen, Yifan [1 ]
Zhang, Shaojun [1 ,4 ,5 ,6 ]
Wang, Yuan [7 ]
Yang, Jiani [2 ]
He, Liyin [3 ]
Wu, Ye [1 ,4 ,5 ,6 ]
Hao, Jiming [1 ,4 ,5 ]
机构
[1] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Cont, Beijing 100084, Peoples R China
[2] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[3] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
[4] State Environm Protect Key Lab Sources & Control A, Beijing 100084, Peoples R China
[5] Beijing Lab Environm Frontier Technol, Beijing 100084, Peoples R China
[6] Transport Planning & Res Inst, Lab Transport Pollut Control & Monitoring Technol, Beijing 100028, Peoples R China
[7] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA
基金
中国国家自然科学基金;
关键词
Air Quality; Machine Learning; On-road Traffic; Population Exposure; Environmental Justice; POLLUTION EXPOSURE; DISPARITIES; EMISSIONS; TRENDS; PM2.5;
D O I
10.1021/acs.est.3c07545
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Air pollution poses a critical public health threat around many megacities but in an uneven manner. Conventional models are limited to depict the highly spatial- and time-varying patterns of ambient pollutant exposures at the community scale for megacities. Here, we developed a machine-learning approach that leverages the dynamic traffic profiles to continuously estimate community-level year-long air pollutant concentrations in Los Angeles, U.S. We found the introduction of real-world dynamic traffic data significantly improved the spatial fidelity of nitrogen dioxide (NO2), maximum daily 8-h average ozone (MDA8 O-3), and fine particulate matter (PM2.5) simulations by 47%, 4%, and 15%, respectively. We successfully captured PM2.5 levels exceeding limits due to heavy traffic activities and providing an "out-of-limit map" tool to identify exposure disparities within highly polluted communities. In contrast, the model without real-world dynamic traffic data lacks the ability to capture the traffic-induced exposure disparities and significantly underestimate residents' exposure to PM2.5. The underestimations are more severe for disadvantaged communities such as black and low-income groups, showing the significance of incorporating real-time traffic data in exposure disparity assessment.
引用
下载
收藏
页码:3118 / 3128
页数:11
相关论文
共 50 条
  • [41] Machine Learning Aided Air Traffic Flow Analysis Based on Aviation Big Data
    Gui, Guan
    Zhou, Ziqi
    Wang, Juan
    Liu, Fan
    Sun, Jinlong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (05) : 4817 - 4826
  • [42] Freeway Traffic Speed Estimation by Regression Machine-Learning Techniques Using Probe Vehicle and Sensor Detector Data
    Zhang, Zhao
    Yang, Xianfeng
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2020, 146 (12)
  • [43] Stochastic event set generation for tropical cyclone using machine-learning approach guided by environmental data
    Bongirwar, Vishal
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2020, 40 (15) : 6265 - 6281
  • [44] Machine learning for environmental justice: Dissecting an algorithmic approach to predict drinking water quality in California
    Karasaki, Seigi
    Morello-Frosch, Rachel
    Callaway, Duncan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 951
  • [45] ASSESSMENT AND MAPPING OF URBAN ENVIRONMENTAL QUALITY USING REMOTE SENSING AND GEOSPATIAL DATA
    Danai, Ifanti
    Tsakiri, Maria-Strati
    Mallinis, Giorgos
    Georgiadis, Harris
    Kaimaris, Dimitris
    Patias, Petros
    SIXTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2018), 2018, 10773
  • [46] Concepts in Quality Assessment for Machine Learning - From Test Data to Arguments
    Ishikawa, Fuyuki
    CONCEPTUAL MODELING, ER 2018, 2018, 11157 : 536 - 544
  • [47] A Novel Machine Learning Approach Toward Quality Assessment of Sensor Data
    Rahman, Ashfaqur
    Smith, Daniel V.
    Timms, Greg
    IEEE SENSORS JOURNAL, 2014, 14 (04) : 1035 - 1047
  • [48] Environmental hazard assessment and monitoring for air pollution using machine learning and remote sensing
    S. Abu El-Magd
    G. Soliman
    M. Morsy
    S. Kharbish
    International Journal of Environmental Science and Technology, 2023, 20 : 6103 - 6116
  • [49] Environmental hazard assessment and monitoring for air pollution using machine learning and remote sensing
    Abu El-Magd, S.
    Soliman, G.
    Morsy, M.
    Kharbish, S.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (06) : 6103 - 6116
  • [50] Driver Risk Assessment Using Traffic Violation and Accident Data by Machine Learning Approaches
    Fang, Aifen
    Qiu, Chenlu
    Zhao, Lei
    Jin, Yongjun
    2018 3RD IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (ICITE), 2018, : 291 - 295