Toward a Synergistic Optimization of Porous Electrode Formulation and Polysulfide Regulation in Lithium-Sulfur Batteries

被引:3
|
作者
Yari, Saeed [1 ,2 ,3 ]
Henderick, Lowie [4 ]
Choobar, Behnam Ghalami [1 ]
Detavernier, Christophe [4 ]
Safari, Mohammadhosein [1 ,2 ,3 ]
机构
[1] UHasselt, Inst Mat Res IMO Imomec, Martelarenlaan 42, B-3500 Hasselt, Belgium
[2] Energyville, Thor Pk 8320, B-3600 Genk, Belgium
[3] IMEC, Div IMOMEC, B-3590 Diepenbeek, Belgium
[4] Univ Ghent, Dept Solid State Sci, B-9000 Ghent, Belgium
关键词
aging; catalyst; formulation; polysulfide regulation; sulfur electrode; INTENSIVE DRY; PERFORMANCE; CARBON; PRECIPITATION; CATHODE; AL2O3;
D O I
10.1002/smll.202307090
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of functional materials is a popular strategy to mitigate the polysulfide-induced accelerated aging of lithium-sulfur (Li-S) batteries. However, deep insights into the role of electrode design and formulation are less elaborated in the available literature. Such information is not easy to unearth from the existing reports on account of the scattered nature of the data and the big dissimilarities among the reported materials, preparation protocols, and cycling conditions. In this study, model functional materials known for their affinity toward polysulfide species, are integrated into the porous sulfur electrodes at different quantities and with various spatial distributions. The electrodes are assembled in 240 lithium-sulfur cells and thoroughly analyzed for their short- and long-term electrochemical performance. Advanced data processing and visualization techniques enable the unraveling of the impact of porous electrodes' formulation and design on self-discharge, sulfur utilization, and capacity loss. The results highlight and quantify the sensitivity of the cell performance to the synergistic interactions of catalyst loading and its spatial positioning with respect to the sulfur particles and carbon-binder domain. The findings of this work pave the road for a holistic optimization of the advanced sulfur electrodes for durable Li-S batteries. This research seeks to offer key insights into optimizing advanced electrodes for lithium-sulfur batteries. The study emphasizes the critical role of optimal catalyst quantity and strategic placement near sulfur particles or the carbon-binder domain. These factors notably impact capacity retention and rate-capability, governing the local balance between the conversion and migration rates of polysulfides.image
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Stabilizing Lithium-Sulfur Batteries through Control of Sulfur Aggregation and Polysulfide Dissolution
    Liu, Qian
    Zhang, Jianhua
    He, Shu-Ang
    Zou, Rujia
    Xu, Chaoting
    Cui, Zhe
    Huang, Xiaojuan
    Guan, Guoqiang
    Zhang, Wenlong
    Xu, Kaibing
    Hu, Junqing
    SMALL, 2018, 14 (20)
  • [42] Porous Carbon Hosts for Lithium-Sulfur Batteries
    Wang, Minya
    Xia, Xinhui
    Zhong, Yu
    Wu, Jianbo
    Xu, Ruochen
    Yao, Zhujun
    Wang, Donghuang
    Tang, Wangjia
    Wang, Xiuli
    Tu, Jiangping
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (15) : 3710 - 3725
  • [43] Recycling inactive lithium in lithium-sulfur batteries using organic polysulfide redox
    Yao, Li-Yang
    Hou, Li-Peng
    Song, Yun-Wei
    Zhao, Meng
    Xie, Jin
    Li, Bo-Quan
    Zhang, Qiang
    Huang, Jia-Qi
    Zhang, Xue-Qiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (14) : 7441 - 7446
  • [44] A short review on dissolved lithium polysulfide catholytes for advanced lithium-sulfur batteries
    Saroha, Rakesh
    Ahn, Jou-Hyeon
    Cho, Jung Sang
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (03) : 461 - 474
  • [45] Influence of Lithium Polysulfide Clustering on the Kinetics of Electrochemical Conversion in Lithium-Sulfur Batteries
    Gupta, Abhay
    Bhargav, Amruth
    Jones, John-Paul
    Bugga, Ratnakumar V.
    Manthiram, Arumugam
    CHEMISTRY OF MATERIALS, 2020, 32 (05) : 2070 - 2077
  • [46] A short review on dissolved lithium polysulfide catholytes for advanced lithium-sulfur batteries
    Rakesh Saroha
    Jou-Hyeon Ahn
    Jung Sang Cho
    Korean Journal of Chemical Engineering, 2021, 38 : 461 - 474
  • [47] A Polysulfide-Immobilizing Polymer Retards the Shuttling of Polysulfide Intermediates in Lithium-Sulfur Batteries
    Tu, Shuibin
    Chen, Xiang
    Zhao, Xinxin
    Cheng, Mingren
    Xiong, Peixun
    He, Yongwu
    Zhang, Qiang
    Xu, Yunhua
    ADVANCED MATERIALS, 2018, 30 (45)
  • [48] A Perspective toward Practical Lithium-Sulfur Batteries
    Zhao, Meng
    Li, Bo-Quan
    Zhang, Xue-Qiang
    Huang, Jia-Qi
    Zhang, Qiang
    ACS CENTRAL SCIENCE, 2020, 6 (07) : 1095 - 1104
  • [49] Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte
    Yu, Xingwen
    Bi, Zhonghe
    Zhao, Feng
    Manthiram, Arumugam
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (30) : 16625 - 16631
  • [50] A gelatin-based artificial SEI for lithium deposition regulation and polysulfide shuttle suppression in lithium-sulfur batteries
    Naseem Akhtar
    Xiaogang Sun
    Muhammad Yasir Akram
    Fakhar Zaman
    Weikun Wang
    Anbang Wang
    Long Chen
    Hao Zhang
    Yuepeng Guan
    Yaqin Huang
    Journal of Energy Chemistry, 2021, 52 (01) : 310 - 317