Pyrite copper nickel sulfide for stable hydrogen evolution reaction in alkaline media

被引:2
|
作者
Duraivel, Malarkodi [1 ]
Nagappan, Saravanan [2 ]
Mohanraj, K. [3 ]
Prabakar, Kandasamy [1 ]
机构
[1] Pusan Natl Univ, Dept Elect & Elect Engn, Adv Sustainable Energy Lab, 2 Busandaehak ro 63beon gil, Pusan 46241, South Korea
[2] Pukyong Natl Univ, Ind Univ Cooperat Fdn, Pusan 48513, South Korea
[3] Manonmaniam Sundaranar Univ, Dept Phys, Tirunelveli 627012, Tamil Nadu, India
关键词
Pyrite copper nickel sulfide; Chemical bath deposition; Complexing agents; Hydrogen evolution reaction; Nickel foam; Alkaline electrolyte; EFFICIENT; ELECTROCATALYSTS; NANOSHEETS; INSIGHT; ARRAYS; NI3S2; FOAM; NIS2;
D O I
10.1016/j.ijhydene.2023.11.273
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The alkaline hydrogen evolution reaction is a promising solution to meet future energy demand due to the sustainable production of hydrogen via water electrolysis. The development of copper nickel sulfide (CuNiS) electrocatalysts for hydrogen evolution reaction (HER) relies on robust active sites without degradation. How-ever, the performance of CuNiS depends on the nature of sulfur precursors and complexing agents since the copper and sulfur oxidation states determine the adsorption and release of H2. The CuNiS synthesized with thioacetamide and 3-mercaptopropionic acid as sulfur source and complexing agent, respectively, at 100 degrees C for 10h delivered a lower overpotential of-96 mV to achieve a current density of-10 mA cm-2 in 1 M KOH electrolyte. The positive and negative shifts in binding energy peaks of Ni and S, respectively, caused charge redistribution and charge transfer between metals and S. The transfer of electrons from Ni to Cu atoms decreases the hydrogen binding energy and accelerates the Had desorption process, which leads to the subsequent formation of H2. Moreover, the negative shift in S improves the electron occupation, which helps with proton adsorption and the release of H2.
引用
收藏
页码:1040 / 1046
页数:7
相关论文
共 50 条
  • [41] Nickel nanoparticles coated on the exfoliated graphene layer as an efficient and stable catalyst for oxygen reduction and hydrogen evolution in alkaline media
    Kakaei, Karim
    Ostadi, Zahra
    MATERIALS RESEARCH EXPRESS, 2020, 7 (05)
  • [42] MOF-derived bimetallic NiMo-based sulfide electrocatalysts for efficient hydrogen evolution reaction in alkaline media
    Zhang, Jinping
    Zhang, Wenxin
    Zhang, Jinmei
    Li, Yingxue
    Wang, Yaling
    Yang, Liying
    Yin, Shougen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 935
  • [43] Promoting the water dissociation of nickel sulfide electrocatalyst through introducing cationic vacancies for accelerated hydrogen evolution kinetics in alkaline media
    He, Wenjun
    Zhang, Rui
    Zhang, Jingyu
    Wang, Fangqing
    Li, Ying
    Zhao, Jianling
    Chen, Cong
    Liu, Hui
    Xin, Huolin L.
    JOURNAL OF CATALYSIS, 2022, 410 : 112 - 120
  • [44] ELECTROCATALYTIC EFFECTS INVOLVED IN THE HYDROGEN EVOLUTION REACTION FROM ALKALINE MEDIA
    TILAK, BV
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1984, 187 (APR): : 132 - COLL
  • [45] In Situ Sonoactivation of Polycrystalline Ni for the Hydrogen Evolution Reaction in Alkaline Media
    Foroughi, Faranak
    Tintor, Marina
    Faid, Alaa Y.
    Sunde, Svein
    Jerkiewicz, Gregory
    Coutanceau, Christophe
    Pollet, Bruno G.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (09) : 4520 - 4529
  • [46] Nickel nanocones as efficient and stable catalyst for electrochemical hydrogen evolution reaction
    Darband, Gh. Barati
    Aliofkhazraei, M.
    Rouhaghdam, A. Sabour
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (21) : 14560 - 14565
  • [47] Integration of Theory and Experiment on Mesoporous Nickel Sulfide Microsphere for Hydrogen Evolution Reaction
    Wang, Anqi
    Li, Haobo
    Xiao, Jianping
    Lu, Yiran
    Zhang, Man
    Hu, Kang
    Yan, Kai
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (12): : 15995 - 16000
  • [48] Nickel sulfide and phosphide electrocatalysts for hydrogen evolution reaction: challenges and future perspectives
    Shahroudi, Ali
    Esfandiari, Mahsa
    Habibzadeh, Sajjad
    RSC ADVANCES, 2022, 12 (45) : 29440 - 29468
  • [49] Metallic Iron-Nickel Sulfide Ultrathin Nanosheets As a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media
    Long, Xia
    Li, Guixia
    Wang, Zilong
    Zhu, HouYu
    Zhang, Teng
    Xiao, Shuang
    Guo, Wenyue
    Yang, Shihe
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (37) : 11900 - 11903
  • [50] Nickel-copper bimetal organic framework nanosheets as a highly efficient catalyst for oxygen evolution reaction in alkaline media
    Zheng, Xiangjiang
    Song, Xinyue
    Wang, Xiaomeng
    Zhang, Zhenhua
    Sun, Zhaomei
    Guo, Yingshu
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (11) : 8346 - 8350