Multi-scale multi-attention network for diabetic retinopathy grading

被引:1
|
作者
Xia, Haiying [1 ]
Long, Jie [1 ]
Song, Shuxiang [1 ]
Tan, Yumei [2 ]
机构
[1] Guangxi Normal Univ, Sch Elect & Informat Engn, Guilin 541004, Peoples R China
[2] Guangxi Normal Univ, Sch Comp Sci & Engn, Guilin 541004, Peoples R China
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2024年 / 69卷 / 01期
基金
中国国家自然科学基金;
关键词
diabetic retinopathy grading; lesions attention module; multi-scale feature fusion module; CONVOLUTIONAL NEURAL-NETWORK; SYSTEM; DIAGNOSIS;
D O I
10.1088/1361-6560/ad111d
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Diabetic retinopathy (DR) grading plays an important role in clinical diagnosis. However, automatic grading of DR is challenging due to the presence of intra-class variation and small lesions. On the one hand, deep features learned by convolutional neural networks often lose valid information about these small lesions. On the other hand, the great variability of lesion features, including differences in type and quantity, can exhibit considerable divergence even among fundus images of the same grade. To address these issues, we propose a novel multi-scale multi-attention network (MMNet). Approach. Firstly, to focus on different lesion features of fundus images, we propose a lesion attention module, which aims to encode multiple different lesion attention feature maps by combining channel attention and spatial attention, thus extracting global feature information and preserving diverse lesion features. Secondly, we propose a multi-scale feature fusion module to learn more feature information for small lesion regions, which combines complementary relationships between different convolutional layers to capture more detailed feature information. Furthermore, we introduce a Cross-layer Consistency Constraint Loss to overcome semantic differences between multi-scale features. Main results. The proposed MMNet obtains a high accuracy of 86.4% and a high kappa score of 88.4% for multi-class DR grading tasks on the EyePACS dataset, while 98.6% AUC, 95.3% accuracy, 92.7% recall, 95.0% precision, and 93.3% F1-score for referral and non-referral classification on the Messidor-1 dataset. Extensive experiments on two challenging benchmarks demonstrate that our MMNet achieves significant improvements and outperforms other state-of-the-art DR grading methods. Significance. MMNet has improved the diagnostic efficiency and accuracy of diabetes retinopathy and promoted the application of computer-aided medical diagnosis in DR screening.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Multi-Scale Context Attention Network for Image Retrieval
    Lou, Yihang
    Bai, Yan
    Wang, Shiqi
    Duan, Ling-Yu
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 1128 - 1136
  • [42] Multi-Scale Guided Attention Network for Crowd Counting
    Li, Pengfei
    Zhang, Min
    Wan, Jian
    Jiang, Ming
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [43] MANet: Multi-Scale Attention Network for Correspondence Learning
    Chen, Yukai
    Zheng, Linxin
    Liu, Xin
    Xiao, Guobao
    Xiao, Guobao (gbx@mju.edu.cn), 1978, Institute of Electrical and Electronics Engineers Inc. (28): : 1978 - 1982
  • [44] A Multi-Scale Channel Attention Network for Prostate Segmentation
    Ding, Meiwen
    Lin, Zhiping
    Lee, Chau Hung
    Tan, Cher Heng
    Huang, Weimin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (05) : 1754 - 1758
  • [45] Multi-scale graph attention subspace clustering network
    Wang, Tong
    Wu, Junhua
    Zhang, Zhenquan
    Zhou, Wen
    Chen, Guang
    Liu, Shasha
    NEUROCOMPUTING, 2021, 459 : 302 - 314
  • [46] LezioSeg: Multi-Scale Attention Affine-Based CNN for Segmenting Diabetic Retinopathy Lesions in Images
    Ali, Mohammed Yousef Salem
    Jabreel, Mohammed
    Valls, Aida
    Baget, Marc
    Abdel-Nasser, Mohamed
    ELECTRONICS, 2023, 12 (24)
  • [47] Efficient multi-scale learning via scale embedding for diabetic retinopathy multi-lesion segmentation
    Guo, Song
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [48] Siamese Tracking Network with Multi-attention Mechanism
    Xu, Yuzhuo
    Li, Ting
    Zhu, Bing
    Wang, Fasheng
    Sun, Fuming
    NEURAL PROCESSING LETTERS, 2024, 56 (05)
  • [49] Targeted sentiment classification with multi-attention network
    Tian X.
    Liu P.
    Zhu Z.
    International Journal of Wireless and Mobile Computing, 2022, 23 (3-4) : 231 - 238
  • [50] Deliberate Multi-Attention Network for Image Captioning
    Dan, Zedong
    Fang, Yanmei
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2022, 2022, 13534 : 475 - 487