Diosgenin Glucoside Inhibits the Progression of Osteosarcoma MG-63 by Regulating the PI3K/AKT/mTOR Pathway

被引:2
|
作者
Ruan, Siyuan [1 ]
Gu, Liuwei [1 ]
Wang, Yuqi [1 ]
Huang, Xincheng [1 ]
Cao, Hong [1 ]
机构
[1] Hubei Univ Med, Renmin Hosp, Dept Traumat Orthoped, Shiyan 442000, Peoples R China
关键词
Diosgenin glucoside; osteosarcoma; mTOR signalling; anti-tumour; PI3K; AKT; mTOR pathway; antitumor effects; CELLS; MTOR;
D O I
10.2174/1871520623666230420081738
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Trillium tschonoskii Maxim (TTM) exerts antitumor effects on a variety of tumour cells. However, the antitumor mechanism of Diosgenin glucoside (DG) extracted from TTM is not clear. Objective This study aimed to investigate the anti-tumour effects of DG-induced osteosarcoma MG-63 cells and their molecular mechanism. Methods CCK-8 assay, HE staining, and flow cytometry were used to detect the effects of DG on the proliferation, apoptosis, and cell cycle of osteosarcoma cells. Wound healing and Transwell invasion assays were used to observe the effect of DG on the migration and invasion of osteosarcoma cells. The anti-tumour mechanism of DG on osteosarcoma cells was investigated by immunohistochemistry, Western blot, and RT-PCR. Results DG significantly inhibited osteosarcoma cell activity and proliferation, promoted apoptosis and blocked the G2 phase of the cell cycle. Both wound healing and Transwell invasion assays showed that DG inhibited osteosarcoma cell migration and invasion. Immunohistochemical and western blot results showed that DG inhibited the activation of PI3K/AKT/mTOR. We found that DG also significantly downregulated the expression of S6K1 and eIF4F, which might be associated with the inhibition of protein synthesis. Conclusion DG may inhibit proliferation, migration, invasion, and cell cycle G2 phase arrest of osteosarcoma MG-63 cells and promote apoptosis through the PI3K/AKT/mTOR signalling pathway.
引用
收藏
页码:1670 / 1677
页数:8
相关论文
共 50 条
  • [31] The PI3K/AKT/MTOR signaling pathway: The role of PI3K and AKT inhibitors in breast cancer
    Huemer F.
    Bartsch R.
    Gnant M.
    Current Breast Cancer Reports, 2014, 6 (2) : 59 - 70
  • [32] Germacrone improves liver fibrosis by regulating the PI3K/AKT/mTOR signalling pathway
    Ji, De
    Zhao, Qi
    Qin, Yuwen
    Tong, Huangjin
    Wang, Qiaohan
    Yu, Mengting
    Mao, Chunqin
    Lu, Tulin
    Qiu, Jinchun
    Jiang, Chengxi
    CELL BIOLOGY INTERNATIONAL, 2021, 45 (09) : 1866 - 1875
  • [33] Calycosin, a Phytoestrogen Isoflavone, Induces Apoptosis of Estrogen Receptor-Positive MG-63 Osteosarcoma Cells via the Phosphatidylinositol 3-Kinase (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) Pathway
    Sun, Haitao
    Yin, Mengfan
    Qian, Weiqing
    Yin, Hong
    MEDICAL SCIENCE MONITOR, 2018, 24 : 6178 - 6186
  • [34] Pterostilbene inhibits gallbladder cancer progression by suppressing the PI3K/Akt pathway
    Chenhao Tong
    Yali Wang
    Jiandong Li
    Wenda Cen
    Weiguang Zhang
    Zhiyang Zhu
    Jianhua Yu
    Baochun Lu
    Scientific Reports, 11
  • [35] β-Escin inhibits the proliferation of osteosarcoma cells via blocking the PI3K/Akt pathway
    Zhu, Minyu
    Ying, Jinwei
    Lin, Chaowei
    Wang, Yu
    Huang, Kelun
    Zhou, Yang
    Teng, Honglin
    RSC ADVANCES, 2018, 8 (52): : 29637 - 29644
  • [36] PENK inhibits osteosarcoma cell migration by activating the PI3K/Akt signaling pathway
    Zhang, Hai-ping
    Yu, Zi-liang
    Wu, Bing-bing
    Sun, Fa-rui
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2020, 15 (01)
  • [37] PENK inhibits osteosarcoma cell migration by activating the PI3K/Akt signaling pathway
    Hai-ping Zhang
    Zi-liang Yu
    Bing-bing Wu
    Fa-rui Sun
    Journal of Orthopaedic Surgery and Research, 15
  • [38] Pterostilbene inhibits gallbladder cancer progression by suppressing the PI3K/Akt pathway
    Tong, Chenhao
    Wang, Yali
    Li, Jiandong
    Cen, Wenda
    Zhang, Weiguang
    Zhu, Zhiyang
    Yu, Jianhua
    Lu, Baochun
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [39] PI3K/AKT/mTOR
    Umemura, Shigeki
    Goto, Koichi
    JOURNAL OF THORACIC ONCOLOGY, 2015, 10 (09) : S116 - S117
  • [40] Cytoglobin inhibits migration through PI3K/AKT/mTOR pathway in fibroblast cells
    Demirci, Selami
    Dogan, Aysegul
    Apdik, Huseyin
    Tuysuz, Emre Can
    Gulluoglu, Sukru
    Bayrak, Omer Faruk
    Sahin, Fikrettin
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2018, 437 (1-2) : 133 - 142