OSCILLATION AND NONOSCILLATION FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES

被引:0
|
作者
Guerraiche, Nassim [1 ]
Hamani, Samira [2 ]
Henderson, Johnny [3 ]
机构
[1] Univ Constantine 2, Dept Informat Fondamentale & ses Applicat, BP 67A, Constantine, Algeria
[2] Univ Mostaganem, Lab Math Appl & Pures, BP 227, Mostaganem 27000, Algeria
[3] Baylor Univ, Dept Math, Waco, TX 76798 USA
来源
FIXED POINT THEORY | 2023年 / 24卷 / 02期
关键词
Existence; oscillatory; nonoscillatory; fractional differential inclusions; Caputo-Hadamard type derivative; fixed point; measure of noncompactness;
D O I
10.24193/fpt-ro.2023.2.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For r & ISIN; (1, 2], we establish sufficient conditions for the existence of oscillatory and nonoscillatory solutions to a boundary value problem for an rth order Caputo-Hadamard fractional differential inclusion in a Banach space. Our approach is based upon the set-valued analog of Mo & BULL;nch's fixed point theorem combined with the technique of measure of noncompactness.
引用
收藏
页码:611 / 626
页数:16
相关论文
共 50 条
  • [1] Oscillation and nonoscillation for Caputo-Hadamard impulsive fractional differential inclusions
    Benchohra, Mouffak
    Hamani, Samira
    Zhou, Yong
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [2] Oscillation and nonoscillation for Caputo–Hadamard impulsive fractional differential inclusions
    Mouffak Benchohra
    Samira Hamani
    Yong Zhou
    [J]. Advances in Difference Equations, 2019
  • [3] BOUNDARY VALUE PROBLEMS FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES
    Hammou, Amouria
    Hamani, Samira
    Henderson, Johnny
    [J]. ARCHIVUM MATHEMATICUM, 2022, 58 (04): : 227 - 240
  • [4] CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES
    Abbas, Said
    Benchohra, Mouffak
    Hamidi, Naima
    Henderson, Johnny
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (04) : 1027 - 1045
  • [5] Caputo-Hadamard Fractional Differential Equations in Banach Spaces
    Saïd Abbas
    Mouffak Benchohra
    Naima Hamidi
    Johnny Henderson
    [J]. Fractional Calculus and Applied Analysis, 2018, 21 : 1027 - 1045
  • [6] Sequential Caputo-Hadamard Fractional Differential Equations with Boundary Conditions in Banach Spaces
    Arul, Ramasamy
    Karthikeyan, Panjayan
    Karthikeyan, Kulandhaivel
    Alruwaily, Ymnah
    Almaghamsi, Lamya
    El-hady, El-sayed
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [7] NONLINEAR SEQUENTIAL CAPUTO AND CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS IN BANACH SPACES
    Derbazi, Choukri
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2022, 46 (06): : 841 - 855
  • [8] Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces
    Boutiara, Abdellatif
    Guerbati, Kaddour
    Benbachir, Maamar
    [J]. AIMS MATHEMATICS, 2020, 5 (01): : 259 - 272
  • [9] Caputo-Hadamard fractional differential Cauchy problem in Frechet spaces
    Abbas, Said
    Benchohra, Mouffak
    Berhoun, Farida
    Henderson, Johnny
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2335 - 2344
  • [10] On Caputo-Hadamard type coupled systems of nonconvex fractional differential inclusions
    Belmor, Samiha
    Jarad, Fahd
    Abdeljawad, Thabet
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)