The list-chromatic number and the coloring number of uncountable graphs

被引:0
|
作者
Usuba, Toshimichi [1 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Okubo 3 4 1, Shinjyu ku, Tokyo 1698555, Japan
关键词
ALGEBRAS; SPACES;
D O I
10.1007/s11856-023-2483-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the list-chromatic number and the coloring number of graphs, especially uncountable graphs. We show that the coloring number of a graph coincides with its list-chromatic number provided that the diamond principle holds. Under the GCH assumption, we prove the singular compactness theorem for the list-chromatic number. We also investigate reflection principles for the list-chromatic number and the coloring number of graphs.
引用
收藏
页码:129 / 167
页数:39
相关论文
共 50 条
  • [41] Chromatic number and subtrees of graphs
    Baogang Xu
    Yingli Zhang
    Frontiers of Mathematics in China, 2017, 12 : 441 - 457
  • [42] The Robust Chromatic Number of Graphs
    Bacso, Gabor
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    GRAPHS AND COMBINATORICS, 2024, 40 (04)
  • [43] On Indicated Chromatic Number of Graphs
    S. Francis Raj
    R. Pandiya Raj
    H. P. Patil
    Graphs and Combinatorics, 2017, 33 : 203 - 219
  • [44] On the chromatic number of Toeplitz graphs
    Nicoloso, Sara
    Pietropaoli, Ugo
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 286 - 296
  • [45] On incompactness for chromatic number of graphs
    Shelah, S.
    ACTA MATHEMATICA HUNGARICA, 2013, 139 (04) : 363 - 371
  • [46] Chromatic number and subtrees of graphs
    Xu, Baogang
    Zhang, Yingli
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (02) : 441 - 457
  • [47] The chromatic number of oriented graphs
    Sopena, E
    JOURNAL OF GRAPH THEORY, 1997, 25 (03) : 191 - 205
  • [48] CHROMATIC NUMBER OF SKEW GRAPHS
    PAHLINGS, H
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 25 (03) : 303 - 306
  • [49] COMPLEMENTARY GRAPHS AND THE CHROMATIC NUMBER
    Starr, Colin L.
    Turner, Galen E., III
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2008, 20 (01) : 19 - 26
  • [50] On the chromatic number of tree graphs
    Estivill-Castro, V
    Noy, M
    Urrutia, J
    DISCRETE MATHEMATICS, 2000, 223 (1-3) : 363 - 366