Normalized ground states to the nonlinear Choquard equations with local perturbations

被引:0
|
作者
Shang, Xudong [1 ]
机构
[1] Nanjing Normal Univ, Taizhou Coll, Sch Math, Taizhou 225300, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 03期
关键词
Choquard equation; normalized solution; local perturbation; CONCENTRATION-COMPACTNESS PRINCIPLE; QUALITATIVE PROPERTIES; STANDING WAVES; EXISTENCE; CALCULUS;
D O I
10.3934/era.2024071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we considered the existence of ground state solutions to the following Choquard equation { -triangle u = lambda u + (I-alpha & lowast; F(u))f(u) + mu|u|(q-2)u in R-N, integral(N)(R)|u|(2)dx = a > 0, where N >= 3, I(alpha )is the Riesz potential of order alpha is an element of (0,N), 2 < q <= 2 + 4/N, mu > 0 and lambda is an element of R is a Lagrange multiplier. Under general assumptions on F is an element of C-1(R,R), for a L-2-subcritical and L-2-criticalof perturbation mu|u|(q-2)u, we established several existence or nonexistence results about the normalized ground state solutions.
引用
收藏
页码:1551 / 1573
页数:23
相关论文
共 50 条