Flexible Composite Electrolyte Membranes with Fast Ion Transport Channels for Solid-State Lithium Batteries

被引:1
|
作者
Ma, Xiaojun [1 ]
Mao, Dongxu [1 ]
Xin, Wenkai [1 ]
Yang, Shangyun [1 ]
Zhang, Hao [1 ]
Zhang, Yanzhu [1 ]
Liu, Xundao [1 ]
Dong, Dehua [2 ]
Ye, Zhengmao [1 ]
Li, Jiajie [1 ]
机构
[1] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
[2] Monash Univ, Dept Chem & Biol Engn, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
PVDF-HFP/LLZTO; net-like structure; flexible composite electrolyte; PVEC; POLYMER ELECTROLYTES; CONDUCTIVITY; LI7LA3ZR2O12; LLZTO;
D O I
10.3390/polym16050565
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Numerous endeavors have been dedicated to the development of composite polymer electrolyte (CPE) membranes for all-solid-state batteries (SSBs). However, insufficient ionic conductivity and mechanical properties still pose great challenges in practical applications. In this study, a flexible composite electrolyte membrane (FCPE) with fast ion transport channels was prepared using a phase conversion process combined with in situ polymerization. The polyvinylidene fluoride-hexafluoro propylene (PVDF-HFP) polymer matrix incorporated with lithium lanthanum zirconate (LLZTO) formed a 3D net-like structure, and the in situ polymerized polyvinyl ethylene carbonate (PVEC) enhanced the interface connection. This 3D network, with multiple rapid pathways for Li+ that effectively control Li+ flux, led to uniform lithium deposition. Moreover, the symmetrical lithium cells that used FCPE exhibited high stability after 1200 h of cycling at 0.1 mA cm-2. Specifically, all-solid-state lithium batteries coupled with LiFePO4 cathodes can stably cycle for over 100 cycles at room temperature with high Coulombic efficiencies. Furthermore, after 100 cycles, the infrared spectrum shows that the structure of FCPE remains stable. This work demonstrates a novel insight for designing a flexible composite electrolyte for highly safe SSBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries
    Xu, Yanjun
    Gao, Lina
    Wu, Xianzhang
    Zhang, Shengzhao
    Wang, Xiuli
    Gu, Changdong
    Xia, Xinhui
    Kong, Xueqian
    Tu, Jiangping
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (20) : 23743 - 23750
  • [42] A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries
    Peiran Shi
    Jiabin Ma
    Ming Liu
    Shaoke Guo
    Yanfei Huang
    Shuwei Wang
    Lihan Zhang
    Likun Chen
    Ke Yang
    Xiaotong Liu
    Yuhang Li
    Xufei An
    Danfeng Zhang
    Xing Cheng
    Qidong Li
    Wei Lv
    Guiming Zhong
    Yan-Bing He
    Feiyu Kang
    Nature Nanotechnology, 2023, 18 : 602 - 610
  • [43] Improved Composite Solid Electrolyte through Ionic Liquid-Assisted Polymer Phase for Solid-State Lithium Ion Batteries
    Ou, Jiahua
    Li, Gaoran
    Chen, Zhongwei
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) : A1785 - A1792
  • [44] Composite solid-state electrolytes with fast ion channels constructed from in-situ hydrogen bonding and coupling/crosslinking effects for dendrite-free solid-state lithium batteries
    Zhang, Qi
    Yan, Lei
    Fan, Lei
    Jin, Yi
    Zhang, Xin-Lin
    Sun, Yan-Yun
    JOURNAL OF POWER SOURCES, 2024, 590
  • [45] Rationally Designed PEGDA-LLZTO Composite Electrolyte for Solid-State Lithium Batteries
    Yu, Xingwen
    Liu, Yijie
    Goodenough, John B.
    Manthiram, Arumugam
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (26) : 30703 - 30711
  • [46] Comprehensively -modified polymer electrolyte membranes with multifunctional PMIA for highly -stable all -solid-state lithium -ion batteries
    Liu, Lehao
    Mo, Jinshan
    Li, Jingru
    Liu, Jinxin
    Yan, Hejin
    Lyu, Jing
    Jiang, Bing
    Chu, Lihua
    Li, Meicheng
    JOURNAL OF ENERGY CHEMISTRY, 2020, 48 : 334 - 343
  • [47] A single-ion transport interfacial layer for solid-state lithium batteries
    Chesta, Chesta
    Kalleshappa, Bindu
    Austeria P, Muthu
    Sampath, S.
    Electrochimica Acta, 2024, 507
  • [48] Review of various sulfide electrolyte types for solid-state lithium-ion batteries
    Suci, Windhu Griyasti
    Aliwarga, Harry Kasuma
    Azinuddin, Yazid Rijal
    Setyawati, Rosana Budi
    Stulasti, Khikmah Nur Rikhy
    Purwanto, Agus
    OPEN ENGINEERING, 2022, 12 (01): : 409 - 423
  • [49] Computational Design of Inorganic Solid-State Electrolyte Materials for Lithium-Ion Batteries
    Ma, Jiale
    Li, Zhenyu
    ACCOUNTS OF MATERIALS RESEARCH, 2024, 5 (05): : 523 - 532
  • [50] Flexible Composite Solid Electrolyte Facilitating Highly Stable "Soft Contacting" Li-Electrolyte Interface for Solid State Lithium-Ion Batteries
    Yang, Luyi
    Wang, Zijian
    Feng, Yancong
    Tan, Rui
    Zuo, Yunxing
    Gao, Rongtan
    Zhao, Yan
    Han, Lei
    Wang, Ziqi
    Pan, Feng
    ADVANCED ENERGY MATERIALS, 2017, 7 (22)