Chiral limit of a fermion-scalar (1/2) + system in covariant gauges

被引:1
|
作者
Noronha, A. [1 ]
de Paula, W.
Nogueira, J. H. de Alvarenga [1 ]
Frederico, T. [1 ]
Pace, E. [2 ]
Salme, G. [3 ]
机构
[1] DCTA, Inst Tecnol Aeronaut, BR-12228900 Sao Jose Dos Campos, Brazil
[2] Univ Roma Tor Vergata, Via Ric Sci 1, I-00133 Rome, Italy
[3] INFN, Sez Roma, Ple A Moro 2, I-00185 Rome, Italy
基金
巴西圣保罗研究基金会;
关键词
SYMMETRY-BREAKING;
D O I
10.1103/PhysRevD.107.096019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The homogeneous Bethe-Salpeter equation (BSE) of a (1/2)+ bound system, that has both fermionic and bosonic degrees of freedom, that we call a mock nucleon, is studied in Minkowski space, in order to analyze the chiral limit in covariant gauges. After adopting an interaction kernel built with a one-particle exchange, the chi-BSE is numerically solved by means of the Nakanishi integral representation and light -front projection. Noteworthy, the chiral limit induces a scale invariance of the model and consequently generates a wealth of striking features: (i) it reduces the number of nontrivial Nakanishi weight functions to only one; (ii) the form of the surviving weight function has a factorized dependence on the two relevant variables, compact and noncompact; and (iii) the coupling constant becomes an explicit function of the real exponent governing the power-law falloff of the nontrivial Nakanishi weight function. The thorough investigation at large transverse momentum of light-front Bethe-Salpeter amplitudes, obtained with massive constituents, provides a confirmation of the expected universal power-law falloff, with exponents predicted by our nonperturbative framework. Finally, one can shed light on the exponents that govern the approach to the upper extremum of the longitudinal-momentum fraction distribution function of the mock nucleon, when the coupling constant varies.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] SCALE-COVARIANT FIELD-THEORIES .5. THE LARGE-N LIMIT OF THE SELF-INTERACTING LAMBDA(PHI-2)2 SCALAR THEORY
    EBBUTT, JM
    RIVERS, RJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10): : 3285 - 3302
  • [22] Magnetic moments of the spin-1/2 singly charmed baryons in covariant baryon chiral perturbation theory
    Shi, Rui-Xiang
    Xiao, Yang
    Geng, Li-Sheng
    PHYSICAL REVIEW D, 2019, 100 (05)
  • [23] Magnetic moments of the spin-1/2 doubly charmed baryons in covariant baryon chiral perturbation theory
    Liu, Ming-Zhu
    Xiao, Yang
    Geng, Li-Sheng
    PHYSICAL REVIEW D, 2018, 98 (01)
  • [24] Soliton solutions of the fermion-Skyrmion system in (2+1) dimensions
    I. Perapechka
    Nobuyuki Sawado
    Ya. Shnir
    Journal of High Energy Physics, 2018
  • [25] Infrared absorption in heavy fermion system CeNi1-xCoxGe2
    Kwon, YS
    Hong, JB
    Im, HJ
    Nishi, T
    Kimura, S
    PHYSICA B-CONDENSED MATTER, 2006, 378-80 (823-824) : 823 - 824
  • [26] Soliton solutions of the fermion-Skyrmion system in (2+1) dimensions
    Perapechka, I.
    Sawado, Nobuyuki
    Shnir, Ya.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10):
  • [27] Superconductivity in Chiral-Asymmetric Matter within the (2+1)-Dimensional Four-Fermion Model
    Zhukovsky, V. Ch.
    Klimenko, K. G.
    Khunjua, T. G.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2017, 72 (03) : 250 - 256
  • [28] Different critical points of chiral and deconfinement phase transitions in (2 + 1)-dimensional fermion–gauge interacting model
    Hong-tao Feng
    Feng-yao Hou
    Yong-hui Xia
    Jun-yi Wang
    Hong-shi Zong
    The European Physical Journal C, 2014, 74
  • [29] Scalar and vector interactions of a composite spin-1/2 system
    Wallace, SJ
    Gross, F
    Tjon, JA
    PHYSICAL REVIEW C, 1996, 53 (02): : 860 - 870
  • [30] Phase diagram and quasiparticles of a lattice SU(2) scalar-fermion model in 2+1 dimensions -: art. no. 034501
    Alonso, JL
    Boucaud, P
    Martin-Mayor, V
    van der Sijs, AJ
    PHYSICAL REVIEW D, 2000, 61 (03)