Chiral limit of a fermion-scalar (1/2) + system in covariant gauges

被引:1
|
作者
Noronha, A. [1 ]
de Paula, W.
Nogueira, J. H. de Alvarenga [1 ]
Frederico, T. [1 ]
Pace, E. [2 ]
Salme, G. [3 ]
机构
[1] DCTA, Inst Tecnol Aeronaut, BR-12228900 Sao Jose Dos Campos, Brazil
[2] Univ Roma Tor Vergata, Via Ric Sci 1, I-00133 Rome, Italy
[3] INFN, Sez Roma, Ple A Moro 2, I-00185 Rome, Italy
基金
巴西圣保罗研究基金会;
关键词
SYMMETRY-BREAKING;
D O I
10.1103/PhysRevD.107.096019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The homogeneous Bethe-Salpeter equation (BSE) of a (1/2)+ bound system, that has both fermionic and bosonic degrees of freedom, that we call a mock nucleon, is studied in Minkowski space, in order to analyze the chiral limit in covariant gauges. After adopting an interaction kernel built with a one-particle exchange, the chi-BSE is numerically solved by means of the Nakanishi integral representation and light -front projection. Noteworthy, the chiral limit induces a scale invariance of the model and consequently generates a wealth of striking features: (i) it reduces the number of nontrivial Nakanishi weight functions to only one; (ii) the form of the surviving weight function has a factorized dependence on the two relevant variables, compact and noncompact; and (iii) the coupling constant becomes an explicit function of the real exponent governing the power-law falloff of the nontrivial Nakanishi weight function. The thorough investigation at large transverse momentum of light-front Bethe-Salpeter amplitudes, obtained with massive constituents, provides a confirmation of the expected universal power-law falloff, with exponents predicted by our nonperturbative framework. Finally, one can shed light on the exponents that govern the approach to the upper extremum of the longitudinal-momentum fraction distribution function of the mock nucleon, when the coupling constant varies.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Solving the Bethe-Salpeter equation in Minkowski space for a fermion-scalar system
    Nogueira, J. H. Alvarenga
    Gherardi, V.
    Frederico, T.
    Salme, G.
    Colasante, D.
    Pace, E.
    PHYSICAL REVIEW D, 2019, 100 (01)
  • [2] CHARGED FERMION CORRELATION-FUNCTIONS IN A LATTICE SCALAR-FERMION MODEL WITH GLOBAL CHIRAL U(1) SYMMETRY
    AOKI, S
    LEE, IH
    SHROCK, RE
    NUCLEAR PHYSICS B, 1992, 388 (01) : 229 - 242
  • [3] CHIRAL SYMMETRY PROPERTIES OF U(1) LATTICE GAUGE-THEORY WITH SCALAR AND FERMION FIELDS
    LEE, IH
    SHROCK, RE
    NUCLEAR PHYSICS B, 1988, 305 (02) : 286 - 304
  • [4] The ΔI=1/2 rule in the chiral limit
    Bijnens, J
    Prades, J
    JOURNAL OF HIGH ENERGY PHYSICS, 1999, (01):
  • [5] Chiral symmetry breaking in strongly coupled U(1) gauge theory coupled to scalar and fermion matter
    Chemtob, M
    Langfeld, K
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (25): : 4597 - 4610
  • [6] COVARIANT QUANTIZATION OF CHIRAL BOSONS AND OSP(1,1/2) SYMMETRY
    MCCLAIN, B
    WU, YS
    YU, F
    NUCLEAR PHYSICS B, 1990, 343 (03) : 689 - 704
  • [7] Universal Dephasing in a Chiral 1D Interacting Fermion System
    Neuenhahn, Clemens
    Marquardt, Florian
    PHYSICAL REVIEW LETTERS, 2009, 102 (04)
  • [8] COVARIANT ONE-PARTICLE APPROXIMATION TO CHIRAL ALGEBRA AND PIRHO A1 SYSTEM
    DAHMEN, HD
    ROTHE, KD
    NUCLEAR PHYSICS B, 1970, B 15 (01) : 77 - &
  • [9] CHIRAL PHASE-TRANSITION IN A LATTICE FERMION-GAUGE-SCALAR MODEL WITH U(1) GAUGE-SYMMETRY
    FRANZKI, W
    FRICK, C
    JERSAK, J
    LUO, XQ
    NUCLEAR PHYSICS B, 1995, 453 (1-2) : 355 - 374
  • [10] CHIRAL SYMMETRY IN UNIFIED FERMION THEORY .1. SU(2) X SU(2)
    HIIDA, K
    PROGRESS OF THEORETICAL PHYSICS, 1970, 43 (01): : 214 - &