Phase-space relative Rényi entropy in density functional theory

被引:0
|
作者
Nagy, Agnes [1 ,2 ]
机构
[1] Univ Debrecen, Dept Theoret Phys, Debrecen, Hungary
[2] Univ Debrecen, Dept Theoret Phys, H-4002 Debrecen, Hungary
关键词
density functional theory; phase-space relative Renyi entropy; LOCAL KINETIC-ENERGY; INFORMATION-ENTROPY; TRANSCRIPTION; SIMILARITY; COMPLEXITY; SHANNON;
D O I
10.1002/qua.27226
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The phase-space relative Renyi entropy is introduced using the information theoretical and thermodynamic view of density functional theory. In the special case of constant inverse temperature the phase-space relative Renyi entropy is a sum of the position-space relative Renyi entropy and a term arising from the momentum space. This quantity can be considered as a measure of similarity. It includes more information than the position-space measures, since it also incorporates momentum-space knowledge. The phase-space relative Renyi entropy is introduced using the information theoretical and thermodynamic view of density functional theory. In the special case of constant inverse temperature the phase-space relative Renyi entropy is a sum of the position-space relative Renyi entropy and a term arising from the momentum space. This quantity can be considered as a measure of similarity. It includes more information than the position-space measures, it also incorporates momentum-space knowledge. image
引用
收藏
页数:8
相关论文
共 50 条
  • [31] SEMICLASSICAL EXPANSION THEORY IN PHASE-SPACE
    SMERZI, A
    PHYSICAL REVIEW A, 1995, 52 (06): : 4365 - 4370
  • [32] DENSITY FUNCTIONAL CALCULATION OF COMPTON PROFILES OF METALS USING PHASE-SPACE APPROACH
    MISHRA, RR
    SINGRU, RM
    SOLID STATE COMMUNICATIONS, 1987, 64 (11) : 1387 - 1388
  • [33] Phase-space distributions in information theory
    Ojha, Vikash Kumar
    Radhakrishnan, Ramkumar
    Tiwari, Siddharth Kumar
    Ughradar, Mariyah
    PRAMANA-JOURNAL OF PHYSICS, 2025, 99 (01):
  • [34] MAXIMAL ENTROPY SPECTRAL FLUCTUATIONS AND THE SAMPLING OF PHASE-SPACE
    REMACLE, F
    LEVINE, RD
    JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (04): : 2383 - 2395
  • [35] Fault Feature-Extraction Method of Aviation Bearing Based on Maximum Correlation Re'nyi Entropy and Phase-Space Reconstruction Technology
    Zhang, Zhen
    Liu, Baoguo
    Liu, Yanxu
    Zhang, Huiguang
    ENTROPY, 2022, 24 (10)
  • [36] Pion entropy and phase-space densities in A+A collisions
    Sinyukov, YM
    Akkelin, SV
    ACTA PHYSICA HUNGARICA A-HEAVY ION PHYSICS, 2005, 22 (1-2): : 171 - 178
  • [37] WIGNERS PHASE-SPACE DENSITY-FUNCTION
    IAGOLNITZER, D
    NATURE, 1984, 310 (5979) : 635 - 635
  • [38] Petz–Rényi relative entropy in QFT from modular theoryPetz–Rényi relative entropy in QFT from modular theoryM. B. Fröb, L. Sangaletti
    Markus B. Fröb
    Leonardo Sangaletti
    Letters in Mathematical Physics, 115 (2)
  • [39] The phase-space view of f(R) gravity
    C de Souza, Jose C.
    Faraoni, Valerio
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (14) : 3637 - 3648
  • [40] Rényi entropy at large energy density in 2D CFT
    Wu-zhong Guo
    Feng-Li Lin
    Jiaju Zhang
    Journal of High Energy Physics, 2019