Charging characteristics of finned thermal energy storage tube under variable rotation

被引:6
|
作者
Guo, Junfei [1 ]
Yang, Bo [1 ]
Li, Ze [1 ]
Lu, Liu [1 ]
Yang, Xiaohu [1 ,2 ]
He, Ya-Ling [2 ]
机构
[1] Xi An Jiao Tong Univ, Inst Bldg Environm & Sustainabil Technol, Sch Human Settlements & Civil Engn, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar photovoltaic-thermal system; Thermal energy storage tube; Metal fins; Variable rotation; SHELL-AND-TUBE; HEAT-TRANSFER; MELTING PROCESS; PHASE-CHANGE; PARAFFIN; UNIT; PCM; ENHANCEMENT; PERFORMANCE; BATTERY;
D O I
10.1016/j.applthermaleng.2023.121887
中图分类号
O414.1 [热力学];
学科分类号
摘要
Solar photovoltaic-thermal (PVT) systems effectively offset the drawbacks of intermittent solar and low photovoltaic conversion efficiency. Thermal energy storage (TES) tanks of PVT systems with high charging efficiency and consistent thermal safety might achieve efficient utilization of solar energy for building. A new variable rotational strategy has been proposed to optimize the charging characteristics for TES tubes, taking into consideration the non-uniformity of melting. A series of simulations based on the volume-averaged model are conducted to investigate the thermal energy storage property of TES tubes under variable rotary mechanism. Qualitative and quantitative comparisons are made between variable rotation (omega = 1.5-0.5, 1.5-1.0, 1.5-2.0 rad & sdot;s  1), constant rotation (omega = 1.5 rad & sdot;s  1), and stationary systems. The focus of the comparison is melting efficiency, temperature distribution, and natural convection. The results indicate that rotation effectively shortens charging time, with a 57.62% and 15.73% reduction with variable rotary mechanisms of 1.5-1.0 rad & sdot;s  1 when compared with stationary and constant rotating tubes. Meanwhile, in the final moment, the greatest medium-temperature (55-65 degrees C) proportion of 90.58% and less low-temperature (25-55 degrees C) and hightemperature (65-70 degrees C) paraffin occupation of 4.67% and 4.75% could be obtained, reflecting the completed latent heat storage and stable thermal safety. The optimal variable rotation achieves improvements of 47.84% and 106.73% in time-integral Grashof number (Gr) and heat storage rate, compared with traditional stationary tubes.
引用
下载
收藏
页数:28
相关论文
共 50 条
  • [41] Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube
    Zhang, Yuwen
    Faghri, Amir
    1996, (03)
  • [42] Numerical Analysis on Thermal Energy Storage Device With Finned Copper Tube for an Indirect Type Solar Drying System
    Yadav, Satyapal
    Chandramohan, V. P.
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (03):
  • [43] Experimental study of an externally finned tube with internal heat transfer enhancement for phase change thermal energy storage
    Martinelli, M.
    Bentivoglio, F.
    Couturier, R.
    Fourmigue, J-F
    Marty, P.
    7TH EUROPEAN THERMAL-SCIENCES CONFERENCE (EUROTHERM2016), 2016, 745
  • [44] TRANSIENT NUMERICAL ANALYSIS OF DIFFERENT FINNED TUBE DESIGNS FOR USE IN LATENT HEAT THERMAL ENERGY STORAGE DEVICES
    Beck, Anton
    Koller, Martin
    Walter, Heimo
    Hameter, Michael
    PROCEEDINGS OF ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2015, VOL 2, 2016,
  • [45] Thermal energy storage with PCMs: A comprehensive study of horizontal shell and multi-tube systems with finned design
    Ajarostaghi, Seyed Soheil Mousavi
    Amirsoleymani, Amirhossein
    Arici, Muslum
    Dolati, Adel
    Amiri, Leyla
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [46] Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam
    Yang, Xiaohu
    Yu, Jiabang
    Xiao, Tian
    Hu, Zehuan
    He, Ya-Ling
    APPLIED ENERGY, 2020, 261
  • [47] Investigation of storage rotation effect on phase change material charging process in latent heat thermal energy storage system
    Khosroshahi, Alireza Jaberi
    Hossainpour, Siamak
    JOURNAL OF ENERGY STORAGE, 2021, 36
  • [48] A numerical investigation on the finned storage rotation effect on the phase change material melting process of latent heat thermal energy storage system
    Khosroshahi, Alireza Jaberi
    Hossainpour, Siamak
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [50] Thermal Performance Enhancement of a Longitudinal Finned Latent Thermal Energy Storage Unit
    El Fiti, Maryam
    Salihi, Mustapha
    Harmen, Yasser
    Chhiti, Younes
    Chebak, Ahmed
    Bousalham, Srhir
    Alaoui, Fatima Ezzahrae M'Hamdi
    Achak, Mounia
    Jama, Charafedding
    PROCEEDINGS OF 2021 9TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2021, : 301 - 306