Multiscale relevance of natural images

被引:0
|
作者
Lakhal, Samy [1 ,2 ,3 ]
Darmon, Alexandre [4 ]
Mastromatteo, Iacopo [1 ,5 ]
Marsili, Matteo [6 ]
Benzaquen, Michael [1 ,2 ,5 ]
机构
[1] Ecole Polytech, Chair Econophys & Complex Syst, F-91128 Palaiseau, France
[2] Ecole Polytech, UMR CNRS 7646, LadHyX, F-91128 Palaiseau, France
[3] Sorbonne Univ, UMR CNRS 7190, Inst Jean Rond Alembert, F-75005 Paris, France
[4] Art Res, 33 Rue Censier, F-75005 Paris, France
[5] Capital Fund Management, 23 Rue Univ, F-75007 Paris, France
[6] Abdus Salam Int Ctr Theoret Phys, Quantitat Life Sci Sect, I-34151 Trieste, Italy
关键词
POWER SPECTRA; STATISTICS; PERCOLATION; PERCEPTION; NOISE;
D O I
10.1038/s41598-023-41714-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We use an agnostic information-theoretic approach to investigate the statistical properties of natural images. We introduce the Multiscale Relevance (MSR) measure to assess the robustness of images to compression at all scales. Starting in a controlled environment, we characterize the MSR of synthetic random textures as function of image roughness H and other relevant parameters. We then extend the analysis to natural images and find striking similarities with critical (H approximate to 0) random textures. We show that the MSR is more robust and informative of image content than classical methods such as power spectrum analysis. Finally, we confront the MSR to classical measures for the calibration of common procedures such as color mapping and denoising. Overall, the MSR approach appears to be a good candidate for advanced image analysis and image processing, while providing a good level of physical interpretability.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Multiscale Road Extraction in Remote Sensing Images
    Wulamu, Aziguli
    Shi, Zuxian
    Zhang, Dezheng
    He, Zheyu
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2019, 2019
  • [42] Fast Multiscale Operator Development for Hexagonal Images
    Gardiner, Bryan
    Coleman, Sonya
    Scotney, Bryan
    PATTERN RECOGNITION, PROCEEDINGS, 2009, 5748 : 282 - +
  • [43] A Multiscale Approach for Statistical Characterization of Functional Images
    Antoniadis, Anestis
    Bigot, Jeremie
    von Sachs, Rainer
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 216 - 237
  • [44] Multiscale Kiwifruit Detection from Digital Images
    Xia, Yi
    Nguyen, Minh
    Lutui, Raymond
    Yan, Wei Qi
    IMAGE AND VIDEO TECHNOLOGY, PSIVT 2023, 2024, 14403 : 82 - 95
  • [45] Multiscale Change Detection in Multitemporal Satellite Images
    Celik, Turgay
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (04) : 820 - 824
  • [46] Multiscale morphological edge detection for medical images
    Zhao, Y. Q.
    Liu, J. X.
    Chen, Z. C.
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 1682 - 1686
  • [47] Multiscale Analysis by Images of the Microstructure of Sandy Sediments
    Manzano Huerta, Erick
    Zamora Castro, Sergio A.
    Ibanez Reguera, Raul E.
    2016 IEEE INTERNATIONAL ENGINEERING SUMMIT, II CUMBRE INTERNACIONAL DE LAS INGENIERIAS (IE-SUMMIT), 2016,
  • [48] Characterization of Color Images with Multiscale Monogenic Maxima
    Soulard, Raphael
    Carre, Philippe
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (10) : 2289 - 2302
  • [49] A MULTISCALE VISION MODEL ADAPTED TO THE ASTRONOMICAL IMAGES
    BIJAOUI, A
    RUE, F
    SIGNAL PROCESSING, 1995, 46 (03) : 345 - 362
  • [50] Multiscale edge analysis of halftoned images.
    Veryovka, O
    Fournier, A
    Buchanan, J
    HUMAN VISION AND ELECTRONIC IMAGING III, 1998, 3299 : 461 - 472