Multiscale relevance of natural images

被引:0
|
作者
Lakhal, Samy [1 ,2 ,3 ]
Darmon, Alexandre [4 ]
Mastromatteo, Iacopo [1 ,5 ]
Marsili, Matteo [6 ]
Benzaquen, Michael [1 ,2 ,5 ]
机构
[1] Ecole Polytech, Chair Econophys & Complex Syst, F-91128 Palaiseau, France
[2] Ecole Polytech, UMR CNRS 7646, LadHyX, F-91128 Palaiseau, France
[3] Sorbonne Univ, UMR CNRS 7190, Inst Jean Rond Alembert, F-75005 Paris, France
[4] Art Res, 33 Rue Censier, F-75005 Paris, France
[5] Capital Fund Management, 23 Rue Univ, F-75007 Paris, France
[6] Abdus Salam Int Ctr Theoret Phys, Quantitat Life Sci Sect, I-34151 Trieste, Italy
关键词
POWER SPECTRA; STATISTICS; PERCOLATION; PERCEPTION; NOISE;
D O I
10.1038/s41598-023-41714-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We use an agnostic information-theoretic approach to investigate the statistical properties of natural images. We introduce the Multiscale Relevance (MSR) measure to assess the robustness of images to compression at all scales. Starting in a controlled environment, we characterize the MSR of synthetic random textures as function of image roughness H and other relevant parameters. We then extend the analysis to natural images and find striking similarities with critical (H approximate to 0) random textures. We show that the MSR is more robust and informative of image content than classical methods such as power spectrum analysis. Finally, we confront the MSR to classical measures for the calibration of common procedures such as color mapping and denoising. Overall, the MSR approach appears to be a good candidate for advanced image analysis and image processing, while providing a good level of physical interpretability.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multiscale relevance of natural images
    Samy Lakhal
    Alexandre Darmon
    Iacopo Mastromatteo
    Matteo Marsili
    Michael Benzaquen
    Scientific Reports, 13
  • [2] Simple multiscale image enhancement for natural images
    Tanaka, Go
    Suetake, Noriaki
    Uchino, Eiji
    OPTICAL REVIEW, 2010, 17 (03) : 130 - 138
  • [3] Simple multiscale image enhancement for natural images
    Go Tanaka
    Noriaki Suetake
    Eiji Uchino
    Optical Review, 2010, 17 : 130 - 138
  • [4] A multiscale based approach for automatic shadow detection and removal in natural images
    My Abdelouahed Sabri
    Siham Aqel
    Abdellah Aarab
    Multimedia Tools and Applications, 2019, 78 : 11263 - 11275
  • [5] Low-Level Hierarchical Multiscale Segmentation Statistics of Natural Images
    Akbas, Emre
    Ahuja, Narendra
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (09) : 1900 - 1906
  • [6] A multiscale based approach for automatic shadow detection and removal in natural images
    Abdelouahed Sabri, My
    Aqel, Siham
    Aarab, Abdellah
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (09) : 11263 - 11275
  • [7] A multiscale feature fusion method for cursive text detection in natural scene images
    Chandio, Asghar Ali
    Leghari, Mehwish
    Soomro, Muhammad Ali
    Nizamani, Shah Zaman
    Memon, Saifullah
    IMAGING SCIENCE JOURNAL, 2021, 69 (5-8): : 302 - 318
  • [8] Multiscale analysis of depth images from natural scenes: Scaling in the depth of the woods
    Chene, Yann
    Belin, Etienne
    Rousseau, David
    Chapeau-Blondeau, Francois
    CHAOS SOLITONS & FRACTALS, 2013, 54 : 135 - 149
  • [9] Multiscale methods for the segmentation of images
    Schneider, MK
    Fieguth, PW
    Karl, WC
    Willsky, AS
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 2247 - 2250
  • [10] Man-made structure detection in natural images using a causal multiscale random field
    Kumar, S
    Hebert, M
    2003 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2003, : 119 - 126