Harris Hawks Feature Selection in Distributed Machine Learning for Secure IoT Environments
被引:0
|
作者:
Hijazi, Neveen
论文数: 0引用数: 0
h-index: 0
机构:
Mohamed Bin Zayed Univ Artificial Intelligence MB, Abu Dhabi, U Arab EmiratesMohamed Bin Zayed Univ Artificial Intelligence MB, Abu Dhabi, U Arab Emirates
Hijazi, Neveen
[1
]
论文数: 引用数:
h-index:
机构:
Aloqaily, Moayad
[1
]
Ouni, Bassem
论文数: 0引用数: 0
h-index: 0
机构:
TII, Abu Dhabi, U Arab EmiratesMohamed Bin Zayed Univ Artificial Intelligence MB, Abu Dhabi, U Arab Emirates
Ouni, Bassem
[2
]
论文数: 引用数:
h-index:
机构:
Karray, Fakhri
[1
]
Debbah, Merouane
论文数: 0引用数: 0
h-index: 0
机构:
TII, Abu Dhabi, U Arab EmiratesMohamed Bin Zayed Univ Artificial Intelligence MB, Abu Dhabi, U Arab Emirates
Debbah, Merouane
[2
]
机构:
[1] Mohamed Bin Zayed Univ Artificial Intelligence MB, Abu Dhabi, U Arab Emirates
The development of the Internet of Things (IoT) has dramatically expanded our daily lives, playing a pivotal role in the enablement of smart cities, healthcare, and buildings. Emerging technologies, such as IoT, seek to improve the quality of service in cognitive cities. Although IoT applications are helpful in smart building applications, they present a real risk as the large number of interconnected devices in those buildings, using heterogeneous networks, increases the number of potential IoT attacks. IoT applications can collect and transfer sensitive data. Therefore, it is necessary to develop new methods to detect hacked IoT devices. This paper proposes a Feature Selection (FS) model based on Harris Hawks Optimization (HHO) and Random Weight Network (RWN) to detect IoT botnet attacks launched from compromised IoT devices. Distributed Machine Learning (DML) aims to train models locally on edge devices without sharing data to a central server. Therefore, we apply the proposed approach using centralized and distributed ML models. Both learning models are evaluated under two benchmark datasets for IoT botnet attacks and compared with other well-known classification techniques using different evaluation indicators. The experimental results show an improvement in terms of accuracy, precision, recall, and F-measure in most cases. The proposed method achieves an average F-measure up to 99.9%. The results show that the DML model achieves competitive performance against centralized ML while maintaining the data locally.
机构:
Guizhou Univ Finance & Econ, Guizhou Key Lab Big Data Stat Anal, Guiyang 550025, Peoples R China
Guizhou Univ Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Guiyang 550025, Peoples R China
Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R ChinaGuizhou Univ Finance & Econ, Guizhou Key Lab Big Data Stat Anal, Guiyang 550025, Peoples R China
Long, Wen
Jiao, Jianjun
论文数: 0引用数: 0
h-index: 0
机构:
Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R ChinaGuizhou Univ Finance & Econ, Guizhou Key Lab Big Data Stat Anal, Guiyang 550025, Peoples R China
Jiao, Jianjun
Xu, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Guizhou Univ Finance & Econ, Guizhou Key Lab Big Data Stat Anal, Guiyang 550025, Peoples R China
Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R ChinaGuizhou Univ Finance & Econ, Guizhou Key Lab Big Data Stat Anal, Guiyang 550025, Peoples R China
Xu, Ming
Tang, Mingzhu
论文数: 0引用数: 0
h-index: 0
机构:
Changsha Univ Sci & Technol, Sch Energy Power & Engn, Changsha 410114, Peoples R ChinaGuizhou Univ Finance & Econ, Guizhou Key Lab Big Data Stat Anal, Guiyang 550025, Peoples R China
Tang, Mingzhu
Wu, Tiebin
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ Humanities Sci & Technol, Dept Energy & Elect Engn, Loudi 417000, Peoples R ChinaGuizhou Univ Finance & Econ, Guizhou Key Lab Big Data Stat Anal, Guiyang 550025, Peoples R China
Wu, Tiebin
Cai, Shaohong
论文数: 0引用数: 0
h-index: 0
机构:
Guizhou Univ Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Guiyang 550025, Peoples R ChinaGuizhou Univ Finance & Econ, Guizhou Key Lab Big Data Stat Anal, Guiyang 550025, Peoples R China
机构:
Univ Jordan, King Abdullah Sch Informat Technol 2, Amman, Jordan
World Islamic Sci & Educ Univ, Amman, JordanUniv Jordan, King Abdullah Sch Informat Technol 2, Amman, Jordan
Alzaqebah, Abdullah
Al-Kadi, Omar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jordan, King Abdullah Sch Informat Technol 2, Amman, JordanUniv Jordan, King Abdullah Sch Informat Technol 2, Amman, Jordan
Al-Kadi, Omar
Aljarah, Ibrahim
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jordan, King Abdullah Sch Informat Technol 2, Amman, JordanUniv Jordan, King Abdullah Sch Informat Technol 2, Amman, Jordan
机构:
Hunan Normal Univ, Coll Math & Stat, Dept Stat, Changsha, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Stat, Dept Stat, Changsha, Hunan, Peoples R China
Liu, Junjian
Feng, Huicong
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Sch Med, Dept Pathol & Pathophysiol, Changsha, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Stat, Dept Stat, Changsha, Hunan, Peoples R China
Feng, Huicong
Tang, Yifan
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Sch Med, Dept Pathol & Pathophysiol, Changsha, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Stat, Dept Stat, Changsha, Hunan, Peoples R China
Tang, Yifan
Zhang, Lupeng
论文数: 0引用数: 0
h-index: 0
机构:
Jishou Univ, Sch Med, Dept Biochem & Mol Biol, Jishou, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Stat, Dept Stat, Changsha, Hunan, Peoples R China
Zhang, Lupeng
Qu, Chiwen
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Coll Math & Stat, Dept Stat, Changsha, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Stat, Dept Stat, Changsha, Hunan, Peoples R China
Qu, Chiwen
Zeng, Xiaomin
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Xiangya Publ Hlth Sch, Dept Epidemiol & Hlth Stat, Changsha, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Stat, Dept Stat, Changsha, Hunan, Peoples R China
Zeng, Xiaomin
Peng, Xiaoning
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Coll Math & Stat, Dept Stat, Changsha, Hunan, Peoples R China
Hunan Normal Univ, Sch Med, Dept Pathol & Pathophysiol, Changsha, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Stat, Dept Stat, Changsha, Hunan, Peoples R China