Generalized symmetries as homotopy Lie algebras

被引:0
|
作者
Jonke, Larisa [1 ,2 ]
机构
[1] Rudjer Boskovic Inst, Div Theoret Phys, Bijenicka 54, Zagreb 1000, Croatia
[2] Dublin Inst Adv Studies, Sch Theoret Phys, 10 Burlington Rd, Dublin, Ireland
来源
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS | 2023年 / 232卷 / 23-24期
关键词
NONCOMMUTATIVE GEOMETRY; FIELD-THEORY; DUALITY;
D O I
10.1140/epjs/s11734-023-00841-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Homotopy Lie algebras are a generalization of differential graded Lie algebras encoding both the kinematics and dynamics of a given field theory. Focusing on kinematics, we show that these algebras provide a natural framework for the description of generalized gauge symmetries using two specific examples. The first example deals with the non-commutative gauge symmetry obtained using Drinfel'd twist of the symmetry Hopf algebra. The homotopy Lie algebra compatible with the twisted gauge symmetry turns out to be the recently proposed braided L-8-algebra. In the second example, we focus on the generalized gauge symmetry of the double field theory. The symmetry includes both diffeomorphisms and gauge transformation and can consistently be defined using a curved L-8-algebra.
引用
收藏
页码:3715 / 3721
页数:7
相关论文
共 50 条
  • [12] Courant algebroids and strongly homotopy Lie algebras
    Roytenberg, D
    Weinstein, A
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 46 (01) : 81 - 93
  • [13] Strong homotopy Lie algebras, homotopy Poisson manifolds and Courant algebroids
    Honglei Lang
    Yunhe Sheng
    Xiaomeng Xu
    Letters in Mathematical Physics, 2017, 107 : 861 - 885
  • [14] Strong homotopy Lie algebras, homotopy Poisson manifolds and Courant algebroids
    Lang, Honglei
    Sheng, Yunhe
    Xu, Xiaomeng
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (05) : 861 - 885
  • [15] Quantized GIM lie algebras and their Lusztig symmetries
    Tan, YJ
    JOURNAL OF ALGEBRA, 2005, 289 (01) : 214 - 276
  • [16] Generalized Fuzzy Lie Ideals of Lie Algebras
    MAkram
    BDavvaz
    KPShum
    模糊系统与数学, 2010, 24 (04) : 48 - 55
  • [17] Homotopy theory of complete Lie algebras and Lie models of simplicial sets
    Buijs, Urtzi
    Felix, Yves
    Murillo, Aniceto
    Tanre, Daniel
    JOURNAL OF TOPOLOGY, 2018, 11 (03) : 799 - 825
  • [18] GENERALIZED LIE-ALGEBRAS
    SCHEUNERT, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (04) : 712 - 720
  • [19] Generalized derivations of Lie algebras
    Leger, GF
    Luks, EM
    JOURNAL OF ALGEBRA, 2000, 228 (01) : 165 - 203
  • [20] Generalized Lie algebras of type An
    Lyubashenko, V
    Sudbery, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) : 3487 - 3504